
AutoBioLearn: An Automated Data Science Framework for
eXplainable Analyses (XAI) of Clinical Datasets
Lucas P. B. Moreira1, Maria L. G. Kuniyoshi 2, Zofia Wicik3,4,

David C. Martins-Jr5, Helena Brentani2, Sérgio N. Simões1

1PPCOMP – Instituto Federal do Espı́rito Santo – Brazil

2IPq – Faculdade de Medicina da Universidade de São Paulo – Brazil

3Dept. of Exp. & Clin. Pharmacology, CEPT, Med. Univ. Warsaw, Poland

4Dept. of Neurochemistry, Inst. of Psychiatry & Neurology, Warsaw, Poland

5CMCC – Universidade Federal do ABC – Brazil

lpbadaro55@gmail.com, sergio@ifes.edu.br

Abstract. With the increasing volume of biological and medical data, the ap-
plication of efficient data science techniques has become essential for analysis.
However, healthcare data scientists often need to integrate and analyze mul-
tiple datasets simultaneously. Although these analyses share similarities, they
require adjustments to various parameters, delaying development and further
hindering knowledge discovery. In this paper, we propose a framework that en-
capsulates all stages of typical data science analyses, from data pre-processing,
execution, and evaluation to the interpretation of models. In addition, the frame-
work includes XAI analyses. In tests involving a clinical dataset, the framework
achieved a reduction of 92% in lines of code.

1. Introduction
1.1. Contextualization
During the past century, researchers in the health sciences have relied mainly on clas-
sical data analysis approaches. Statistical analyses have significantly expanded our un-
derstanding of diagnosis and treatment, informing critical decisions such as medication
prescriptions and surgical interventions [MacEachern and Forkert 2021]. However, while
these methods have significantly contributed to medical advancements, they frequently
fail to achieve the level of precision required for accurate diagnoses and rapid decision-
making, as they tend to overlook individual patient characteristics. With the increase in
computational power and the growing volume of biological data collected from patients,
recent studies have begun to apply novel methodologies to propose treatments with a
higher degree of personalization [Duffy 2016]. These advancements have enabled the si-
multaneous and systematic analysis of diverse datasets [Lee et al. 2014], facilitating the
integration and fusion of various types of data – including genomic profiling, medical
imaging, laboratory tests, and demographic information [Alber et al. 2019].

Such methodology includes Artificial Intelligence (AI), particularly Machine
Learning (ML) models [MacEachern and Forkert 2021, Ahmed et al. 2020], which have
shown great potential in assisting with disease diagnosis and treatment by revealing com-
plex patterns in patient data that may initially be hidden [Shailaja et al. 2018]. Some ML



models are considered black-boxes – i.e., they are too complex for human understanding.
To address this, tools such as eXplainable Artificial Intelligence (XAI) have been devel-
oped to aid in model interpretation [Petch et al. 2022, Srinivasu et al. 2022]. The XAI
approach complements ML data analysis by providing further insights into model behav-
ior [Neto 2021]. However, even though XAI makes ML models more comprehensible,
implementing these frameworks requires programming knowledge that often falls outside
the skillset of many health sciences researchers. Additionally, even for trained ML and
XAI researchers, building extensive pipelines demands a significant amount of time and
is prone to human error [Alanazi 2022]. Furthermore, when the same pipeline must be
applied to multiple inputs and hyperparameter configurations, the repetitive nature of the
process increases both the likelihood of human error and the time required for setting up
the experiments.

1.2. Related Works

Researchers have already proposed tools to mitigate the issues mentioned in the pre-
vious section. One example is graphical user interfaces, but none adequately inte-
grates multiple datasets, compares the performance of ML models, or performs XAI
to explain the results. For instance, Orange and KNIME are tools with drag-and-
drop interfaces for constructing ML pipelines with preprocessing, exploratory analy-
sis, model tuning, and training [Berthold et al. 2009, Demšar et al. 2013]. However,
both lack features for XAI analysis, dataset balancing, and comparing the performance
of models trained with different algorithms and hyperparameters. Additionally, Or-
ange does not support recent ML models such as XGBoost, CatBoost, and LightGBM
[Demšar et al. 2013, Chen and Guestrin 2016, Dorogush et al. 2018, Ke et al. 2017].

There are other tools that can perform analyses on biological data, such as: JAD-
Bio, H2O AutoML and TPOT. JADBio [Tsamardinos et al. 2022] is an AutoML platform
focused on biomedical data, ideal for users without experience in data science. It facili-
tates the creation of predictive models, offering effective feature selection and model inter-
pretability. However, JADBio has some limitations regarding the data science pipeline. It
does not perform exploratory data analysis, nor does it allow for in-depth customized pre-
processing. Additionally, it provides limited model explainability, lacking detailed tools
like SHAP, and it does not offer comprehensive graphical comparisons between gener-
ated models. TPOT [Le et al. 2020] is an AutoML library that uses genetic algorithms to
explore and optimize machine learning pipelines. It automates the preprocessing, feature
selection, and hyperparameter tuning processes to find the best solution. However, TPOT
does not perform exploratory data analysis, the data preprocessing is not fully automated,
and does not offer model explainability or tools for graphical comparison between gener-
ated models.

H2O AutoML [LeDell and Poirier 2020] is a solution designed to automate the
training and tuning of models, supporting a broad array of algorithms such as Random
Forest and neural networks. It is well-suited for both novice and experienced data sci-
entists, offering strong integration with Python and R. However, H2O AutoML is not
tailored specifically for certain needs in biological data analysis, as it lacks features for
handling hierarchical data structures, and systematically analyzing multiple input-output
configurations. Additionally, while it covers many algorithms, it does not currently sup-
port some state-of-the-art models like LightGBM and CatBoost or provide consolidated



explainability through SHAP averaging.

In this paper, we propose AutoBioLearn1, a comprehensive framework that en-
compasses data preprocessing, model and hyperparameter selection, model training with
cross-validation, performance evaluation, visualization, and XAI analysis. Notably, this
framework simplifies the design of ML pipelines for data scientists by providing auto-
mated support for hierarchical data structures, input-output experiment configurations,
and consolidated SHAP analysis – each tailored to meet common demands in biological
research. AutoBioLearn also aids bioinformaticians who require systematic and repet-
itive analyses, minimizing human error through automation and reduced code volume
while offering robust and interpretable insights into data. These features, offered by Au-
toBioLearn, can be beneficial for more complex, segmented datasets typical in biological
research.

2. Key Concepts in Data Science

2.1. Data Preparation

Database preparation is crucial for making a valid input to the ML models. This step
allows the identification and correction of data errors, removal of outliers, and dataset
balancing, all of which contribute to the model achieving optimal results. Imbalanced
datasets have a suboptimal representation of one class, meaning there are more instances
of one class than another [Pecorelli et al. 2020]. The most common data balancing meth-
ods are Oversampling, which artificially increases instances of the minority class, and
Undersampling, which reduces instances of the majority class [Batista et al. 2004]. Out-
liers are data points that significantly deviate from the range of other values and may skew
the model. To address this issue, such values can be removed or replaced by alternatives
such as the mean, the median or the boundaries of the other records’ range [Bonthu 2021].
There are two approaches for handling missing data are their removal or imputation with
techniques such as replacing by the mean, linear regression and specific predictive models
(ex: KNN-imputer) [de Souza et al. 2018].

2.2. Supervised Models, Evaluation Metrics, and Tuning

Classification and Regression are a supervised learning tasks in which a set of labelled
examples (training data) is given to the algorithm, resulting in a model that makes predic-
tions for unseen data points [Mohri et al. 2018]. Classification learns to map inputs x to
outputs y, where y ∈ 1, ..., C, where C represents the number of classes. The resulting
model takes unlabelled x inputs and attributes them to a y value. Regression is simi-
lar to classification, except that the response variable is continuous, unlike classification
where the classes are discrete values. [Murphy 2012]. AutoBioLearn supports the meth-
ods SVM, Random Forest, XGBoost, CatBoost, and LightGBM for both classification
and regression tasks. Additionally, for classification, it also includes support for Logistic
Regression.

Cross-validation is a crucial technique in model evaluation, providing a robust es-
timation of a model’s performance by partitioning the dataset into multiple subsets, or
folds, and training and testing the model on each fold. This process mitigates overfitting

1https://github.com/AutoBioLearn



and offers a more reliable assessment of the model’s ability to generalize to new data.
Model evaluation metrics – such as accuracy, precision, recall, F1-score, and the area un-
der the ROC curve for classification tasks, or R2 and root mean squared error (RMSE)
for regression tasks – provide quantitative insights into model performance. Hyperparam-
eter tuning further enhances model accuracy by systematically adjusting parameters to
identify the optimal configuration. Visualization tools, including boxplots of metric dis-
tributions, learning curves, and SHAP (Shapley Additive Explanations) values, facilitate
the interpretation of model behavior and feature importance, offering a comprehensive
understanding of the model’s strengths and limitations.

2.3. Explainable Artificial Intelligence (XAI)
With the emergence of new ML models, their complexity has increased, some even
being called “black-box”. This urged the need for tools that interpret ML models.
[Srinivasu et al. 2022, Antoniadi et al. 2021]. This is relevant in the medical field, since
some regulations require the explainability of ML models since some studies can be bi-
ased, leading to incorrect results [Adadi and Berrada 2018]. In this context, XAI has
emerged, which is a branch of ML engineering aimed at explaining results, expos-
ing biases, and making ML models understandable to humans [Srinivasu et al. 2022,
Antoniadi et al. 2021]. Even though the XAI concept dates back to the 1970s, Van
Lent coined the term in 2004 to describe how his algorithm could explain the be-
haviour of AI-controlled game characters. Today, the widespread AI/ML use turned XAI
into a widely studied area. Several XAI approaches have emerged, especially for ML
[Adadi and Berrada 2018], and they can be classified according to three criteria:

• Complexity of Interpretability: degree of abstraction and simplicity of the expla-
nation results. Methods with lower complexity use linear models or symbolic rep-
resentations, while complex ones may require neural representations or advanced
data analysis techniques.

• Scope of Interpretability: which aspects are explained. Local interpretability ex-
plains a specific decision and addresses individual explanations, typically to jus-
tify a particular decision for a given instance. Global interpretability explains the
overall logic behind the model’s results.

• Level of Dependence on the ML Model: concerns the relationship between the
explanation method and the specific ML model. Methods can be either model-
agnostic, i.e. applicable to various ML algorithms, or model-specific, i.e. tailored
to a particular class of algorithms.
One of the most well-known methods in XAI is SHAP (SHapley Additive exPla-

nations). It is model-agnostic, works with black-box models, and provides both local
and global explanations [Lundberg and Lee 2017, Slack et al. 2020]. SHAP is based on
Shapley Values, a mathematical concept from game theory that defines how cooperative
players impact the possible outcomes of a game [Shapley 1953]. In the context of XAI,
the model proposed by [Lundberg and Lee 2017] assigns Shapley Value to each feature
as a measure of importance, representing its contribution to the model’s outcome.

3. Methodology
Here we present the AutoBioLearn framework, whose main advantages include an em-
phasis on enhancing interpretability through Explainable AI (XAI) methods, which are
essential for robust biological data analysis.



Additionally, AutoBioLearn is designed to handle complex data structures com-
monly encountered in biological research, such as multi-layered headers organized into
sections. Leveraging Pandas’ multi-index functionality, AutoBioLearn efficiently imports
and manipulates these hierarchical data formats. Furthermore, it enables automated anal-
yses across different sections and combinations of data relative to the target variable. This
capability allows for systematic and detailed exploration, facilitating the discovery of rel-
evant patterns in segmented biological data.

AutoBioLearn also supports complex experimental setups, involving multiple
combinations of input variable groups and target variables. Data scientists often need
to perform numerous analyses across various input-output dataset combinations, which
traditionally requires running the framework multiple times manually. To overcome this
limitation, we introduced a functionality that allows AutoBioLearn to ingest a table listing
all desired input-output combinations and execute all experiments automatically and sys-
tematically. This enhancement streamlines the analysis process, saving time and reducing
the likelihood of human error during setup.

Finally, AutoBioLearn distinguishes itself through its focus on enhancing inter-
pretability via Explainable AI (XAI) methods. When performing SHAP analyses multi-
ple times – for instance, varying train-test partitions – the ranking of feature importance
can fluctuate, potentially affecting result robustness. To mitigate this issue, we imple-
mented a feature called consolidated SHAP, which aggregates the results from multiple
SHAP runs and computes the average feature importance across iterations. This consoli-
dation increases robustness, providing a more stable view of feature impacts and yielding
a single, aggregated chart that offers a clearer and more reliable interpretation of variable
importance. Figure 1 provides an overview of the framework, illustrating the complete
workflow divided into five stages of an ML pipeline:

• Module 1 - Data preparation: describes the dataset with exploratory analysis, pre-
processes the data, balances the dataset, and handles outliers.

• Module 2 - Data Splitting and Balancing: splits the dataset into training and test
sets, and applies validation techniques for later model evaluation.

• Module 3 - Classification / Regression: performs training and prediction for the
selected classifiers or predictors, while calculating performance metrics for model
comparison.

• Module 4 - Explainability (XAI): Trains the selected models and uses SHAP to
demonstrate the variables of greater influence on the model.

• Module 5 - Visualization: Displays the results of the model metrics, the XAI
analysis, technique in graphical form, and provides the option to save them as
image files.

We have developed a Python framework that leverages widely used libraries such
as Scikit-Learn, Pandas, and NumPy. As illustrated in Figure 1, the framework can train
and explain models for both binary and multiclass classification, as well as regression
problems. It organizes functions to perform the complex tasks of each module, thereby
simplifying the machine learning process, including class instantiation, metric analysis,
and explainable artificial intelligence (XAI). To utilize the framework, it is necessary to
instantiate the AutoBioLearn class, which is responsible for automating the pipeline and
is located within the framework’s namespace.



Module 1: Data preparation

StandardizationData
Analysis

Missing data
(removal /
imputation)

Duplicate
Removal

Module 2: Data Splitting and Balancing

Hold-out

Module 3: Classifier / Regressor

Monte Carlo

Recall
Precision
F1-score
Accuracy

- - - 
R2

RMSE

Module 4: Explainability (XAI)

Model results explainability
(SHAP)

Display of
explainability

results

Input

Trained
Model

Dataset
Get

Dataset
Data

Cleaning

Validation
Tecniques

- - -
K-fold

Leave-one-out
...

Random Forest
XGBoost
CatBoost

LightBoost
...

Logistic Regr.

Predictor:

Module 5: Visualization 

Train
Class Balancing

Evaluation

Test (N times)

Display of
metrics via

charts

Figure 1. AutoBioLearn Framework Overview flowchart.

3.1. Module 1: Data Preparation

This module contains the methods that were encapsulated for data input and processing.
Table 1 details the methods of this module. There are methods for encapsulating the
dataset inputting, exploratory data analyses, handling missing data, type conversion, data
cleaning and data removal.

3.2. Module 2: Data Splitting and Balancing

This module executes the hold-out method, which involves splitting the data into training
and test sets. Optionally, it can also perform class balancing. The methods in this module
work in conjunction with those in module 3. Finally, the training data (balanced or unbal-
anced) are passed to the subsequent module responsible for training the predictive model
(either a classifier or regressor). The test data are set aside for the final evaluation of the
trained model.

3.3. Module 3: Validation and Evaluation of the Predictor Models

This module provides two methods for models training, validation, testing and evalua-
tion. The method set validations configures the specifications of which validations will
be employed. Optionally it can also perform the class balancing. In its turn, the method
run models encapsulates the holdout, training, validation and testing. Finally, the method



Table 1. Module 1: Data preparation
Data Input and Analysis Methods

load dataset Encapsulates the code responsible for data input, processing based on file extension, and
column name management. The user provides the file path via the path parameter, specifies
the target variable column with target, and can optionally set the column delimiter through
delimiter.

perform eda This method assists users in identifying the data processing methods implemented by the
class. Additionally, it encapsulates the use of the ydata-profile library to generate an ex-
ploratory data analysis (EDA) dashboard. The dashboard can optionally be saved as a file,
with the file name specified as a parameter.

Methods for handling missing data
show cols na
show rows na

Show the percentage of missing data in rows and columns, helping to define the parameters
for drop rows na and drop cols na.

drop rows na Removes rows with missing data above a user-specified percentage specified by the user
through the parameter percent, or uses the default value of 10%, returning the indices of the
removed rows.

drop cols na Removes columns with missing data above a user-specified percentage specified by the user
through the parameter percent, or uses the default value of 30%, returning the indices of the
removed rows.

impute cols na Performs missing data imputation using one of the following approaches: mean, mode, me-
dian, or KNN.

Data type conversion methods
encode categorical converts categorical data into numerical values. Before the conversion, it excludes missing

records to avoid incorrect assignments. To use it, the user specifies a list of names of the
columns with categorical data, passing them as the cols parameter.

encode datetime Converts date values into numerical values by passing the columns to be converted as a list
through the cols parameter.

Dataset cleaning methods
remove cols Removes user-specified columns from the dataset based on an input list

remove duplicates Automatically eliminates duplicate records without the need for parameters

eval models returns the predictor (classifier or regressor) metrics in tabular mode. The
details of these methods are provided in Table 2.

Table 2. Modules 2 and 3: Methods for execution and validation of the models
set validations Defines which validations will be executed in the models and the parameters of each one. As

default, the hold-outvalidation is configured to consider 70% for training and 30% for testing, but it
also considers user-defined possibilities. For this, the method set validations has three parameters:

• validations: a list which specifies the validations to be used;
• num folds: number of folds which validations of type fold will perform in the dataset;
• train size: percentage of the dataset used for training in hold-out models.

run models Trains and validates the models, applying the configured validation settings for each, including
Monte Carlo validation. Additionally, it evaluates each model’s metrics. For validation, the user can
select personalized or default values. The method allows configuration of the following parameters:

• models: a list of predictor models (regressor or classifier) to be executed, which may
include SVM, Random Forest, XGBoost, CatBoost, LightGBM, or Logistic Regression.

• times repeats: specifies the number of repetitions for Monte Carlo validation for
each model.

• params: a dictionary for defining the hyperparameters of each model to be executed.

evaluate models Returns the predictor (classifier or regressor) metrics in tabular mode. It also returns a dictionary
where the metrics’ names are keys and the values are the output of the Pandas describe function.
In addition, it returns a table with the raw values of the chosen metrics, the executed models,
information about Monte Carlo validation, and details about k-fold validation, if applicable. All
metrics are returned by default.



3.4. Modules 4 and 5: Explainability (XAI) and Visualization
The module 4 conducts the eXplainable Artificial Intelligence (XAI) analysis of the pre-
dictor model selected in the previous module. The explainability of the chosen model
is achieved using the SHAP (SHapley Additive exPlanations) technique. A method that
encapsulates the use of SHAP is provided, which generates the explainability data to be
utilized as input for graphical visualization in the subsequent module. The method is
detailed in Table 3.

The module 5 presents the results by means of tables and charts. It includes met-
rics tables and boxplots for the various trained predictor models to facilitate compari-
son. For classifiers, the metrics shown in the boxplots are Accuracy, Recall, Precision,
F1-score, and ROC-AUC. For regressors, the metrics include R2-score (coefficient of de-
termination) and RMSE (Root Mean Square Error). Additionally, SHAP visualizations
are optionally provided, which encompass global explanations, local explanations, inter-
action effects, and a consolidated SHAP analysis that enhances robustness by averaging
feature importances across multiple runs. These methods are described in Table 3.

Table 3. Methods for Explainability Analysis and Visualization
plot metrics Shows results in graphical mode, generating a boxplot comparing the models for each

metric (For classification: Recall, Precision, Accuracy, F1-Score, ROC-AUC. For Regres-
sion: R2, RMSE). A chart is created for each selected metric.

perform xai analysis This method performs XAI analyses, currently using SHAP. By default, it analyzes all
generated models mentioned in Section 3.3, with options to filter by model, validation
method, Monte Carlo execution, or fold number. The analyses are conducted for the spec-
ified models, and the results are stored in an internal class property, ensuring a seamless
and transparent process for the user. Future updates will extend support to additional XAI
techniques.

plot xai analysis This method graphically displays the results generated by the perform xai analysis
method. It provides both global and local explanations for the selected predictors (classi-
fiers or regressors), including additional visualizations such as dependence plots, waterfall
plots, and others for all analyzed models. Furthermore, it generates a consolidated chart
summarizing the results across all executions of the same predictor.

4. Case Study
We compared AutoBioLearn a Python script which applied the same methodology to an-
alyze medical data and the framework was able to substantially reduce the number of
lines of code. We have run both AutoBioLearn and this previous script to the Heart
Failure Prediction Dataset from Kaggle2 [Chicco and Jurman 2020]. This dataset con-
tains 299 patient samples (rows), 12 features (columns) and an additional column called
DEATH EVENT, which is a binary output representing two classes (203 not deceased and
96 deceased patients). The features include age, anaemia, creatinine phosphokinase, dia-
betes, ejection fraction, high blood pressure, platelets, serum creatinine, serum sodium,
sex, smoking and time. AutoBioLearn performed exploratory analysis, executed classifi-
cation models, and conducted XAI analysis. All classification models supported by the
tool were executed and hyperparameterized. We split the data into 80% for training and
20% for testing, using Monte Carlo validation 10 times for each model.

AutoBioLearn reduced the number of lines of code by 92%, from 189 lines to 15,
without considering lines related to imports, comments, blank lines, and data file loading.

2https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data/data



In addition, the number of characters was reduced from 7,785 to 820 characters, also
disregarding comment characters or spaces, resulting in a reduction of approximately 89%
of written characters. It maintained the same results as the non-encapsulated code. Some
examples of charts that the framework’s visualization module can display are illustrated
in Figure 2 and Figure3.

Figure 2 provides an illustrative example of boxplots automatically generated by
AutoBioLearn to compare classifiers based on their F1-scores (left) and ROC-AUC (right)
metrics. The framework can also automatically generate similar plots for additional met-
rics, including Recall, Precision, and Accuracy.

Figure 2. Illustrative example of F1-score (left) and ROC-AUC (right) boxplots
comparing the implemented models, generated by AutoBioLearn. This figure
demonstrates sample metric results produced by the framework. For classifi-
cation tasks, the framework can also generate boxplots for additional metrics,
including Accuracy, Recall, and Precision. Additionally, it is capable of perform-
ing similar analyses for regression models.

On the other hand, Figures 3-(A) and 3-(C) depict the results of global and local
explainability modules, respectively. To make the text concise, we show only the XAI
applied to the XGBoost models, but it is possible to generate these plots for each instance
and classifier. As for the global XAI, Figure 3-(A) shows the order of importance of the
variables for classifying the samples with the model generated at this instance. Addi-
tionally, there is an option to generate a consolidated global explainability plot for each
model, which consists of all instances of a classifier displayed in a single plot. In its
turn, Figure 3-(C) illustrates the local XAI for a single record. In other words, it shows
how features influence the final classification outcome of a single record and instance,
allowing the record-specific explanation. This local analysis can also be performed for all
executions of any chosen classifier or regressor.

Figure 3-(B) illustrates a SHAP dependence plot, which displays the relationship
between a feature and its SHAP values, highlighting how variations in the feature in-
fluence the model’s predictions. Each point in the plot represents a data instance, with
the x-axis showing the feature’s value and the y-axis displaying the corresponding SHAP
value, which indicates that feature’s contribution to the prediction. The color of the points
often corresponds to another feature, providing multi-dimensional insights. This plot
helps identify trends, feature interactions, and the overall influence of each feature on the
model’s output.



Figure 3. Illustrative example of SHAP analysis outputs automatically generated
by AutoBioLearn. (A) Global explanation plot, where the horizontal axis repre-
sents SHAP values, indicating each feature’s contribution to the model. The
vertical axis lists features by importance, with blue dots for low feature values
and red dots for high values. (B) Dependency plot for a specific feature pair, il-
lustrating the relationship between SHAP values and the variable values. Each
point represents an observation, allowing trend identification, such as whether
increases in the variable lead to higher or lower predictions. (C) Local explana-
tion plot showing individual feature impacts on a specific prediction. The hor-
izontal axis represents SHAP values for a single sample, with blue segments
indicating features that decrease the prediction and red segments indicating fea-
tures that increase it.

5. Conclusion

This article presented a framework that assists data scientists in performing ML and XAI
analyses on biological data. In our tests, the framework reduced the code size needed
for analysis by approximately tenfold. Therefore, we consider that AutoBioLearn enables
more systematized analyses in less time, thus accelerating knowledge discovery. By sim-
plifying the programming steps, our tool frees up time for other scientific activities.

For future versions of this project, we plan to incorporate generative AI methods
to enhance data augmentation and model performance, enabling the generation of syn-
thetic data to improve model robustness. With these additions, our work supports the
streamlined creation of supervised models with improved performance and integrated ex-
plainability analysis, allowing data scientists to efficiently conduct multiple sophisticated
analyses.

References

Adadi, A. and Berrada, M. (2018). Peeking inside the black-box: a survey on explainable
artificial intelligence (xai). IEEE access, 6:52138–52160.



Ahmed, Z., Mohamed, K., Zeeshan, S., and Dong, X. (2020). Artificial intelligence
with multi-functional machine learning platform development for better healthcare and
precision medicine. Database, 2020.

Alanazi, A. (2022). Using machine learning for healthcare challenges and opportunities.
Informatics in Medicine Unlocked, 30:100924.

Alber, M., Buganza Tepole, A., Cannon, W. R., De, S., Dura-Bernal, S., Garikipati, K.,
Karniadakis, G., Lytton, W. W., Perdikaris, P., Petzold, L., et al. (2019). Integrating ma-
chine learning and multiscale modeling—perspectives, challenges, and opportunities
in the biological, biomedical, and behavioral sciences. NPJ digital medicine, 2(1):1–
11.

Antoniadi, A. M., Du, Y., Guendouz, Y., Wei, L., Mazo, C., Becker, B. A., and Mooney, C.
(2021). Current challenges and future opportunities for xai in machine learning-based
clinical decision support systems: a systematic review. Applied Sciences, 11(11):5088.

Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the behavior of several
methods for balancing machine learning training data. ACM SIGKDD explorations
newsletter, 6(1):20–29.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Thiel,
K., and Wiswedel, B. (2009). Knime - the konstanz information miner: Version 2.0
and beyond. SIGKDD Explor. Newsl., 11(1):26–31.

Bonthu, H. (2021). Detecting and treating outliers — treating the odd one out!

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 785–794, New York, NY, USA. Association for
Computing Machinery.

Chicco, D. and Jurman, G. (2020). Machine learning can predict survival of patients
with heart failure from serum creatinine and ejection fraction alone. BMC Medical
Information Decision Making, 20(16).

de Souza, R., Ribeiro, R., Ferlin, C., Goldschmidt, R., Carvalho, L., and Soares, J. (2018).
Apoiando o processo de imputação com técnicas de aprendizado de máquina. In Anais
do XXXIII Simpósio Brasileiro de Banco de Dados, pages 259–264, Porto Alegre, RS,
Brasil. SBC.

Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M., Možina, M.,
Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J.,
Žitnik, M., and Zupan, B. (2013). Orange: Data mining toolbox in python. Journal of
Machine Learning Research, 14:2349–2353.

Dorogush, A. V., Ershov, V., and Gulin, A. (2018). Catboost: gradient boosting with
categorical features support. arXiv preprint arXiv:1810.11363.

Duffy, D. J. (2016). Problems, challenges and promises: perspectives on precision
medicine. Briefings in bioinformatics, 17(3):494–504.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30.



Le, T. T., Fu, W., and Moore, J. H. (2020). Scaling tree-based automated machine learning
to biomedical big data with a feature set selector. Bioinformatics, 36(1):250–256.

LeDell, E. and Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning.
7th ICML Workshop on Automated Machine Learning (AutoML).

Lee, G., Singanamalli, A., Wang, H., Feldman, M. D., Master, S. R., Shih, N. N., Span-
gler, E., Rebbeck, T., Tomaszewski, J. E., and Madabhushi, A. (2014). Supervised
multi-view canonical correlation analysis (smvcca): Integrating histologic and pro-
teomic features for predicting recurrent prostate cancer. IEEE transactions on medical
imaging, 34(1):284–297.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predic-
tions. Advances in neural information processing systems, 30.

MacEachern, S. J. and Forkert, N. D. (2021). Machine learning for precision medicine.
Genome, 64(4):416–425.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learn-
ing. MIT press.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Neto, M. G. (2021). Explainable ai: extraindo explicações e aumentando a confiança dos
modelos de ml.

Pecorelli, F., Di Nucci, D., De Roover, C., and De Lucia, A. (2020). A large empirical as-
sessment of the role of data balancing in machine-learning-based code smell detection.
Journal of Systems and Software, 169:110693.

Petch, J., Di, S., and Nelson, W. (2022). Opening the black box: The promise and limita-
tions of explainable machine learning in cardiology. Canadian Journal of Cardiology,
38(2):204–213. Focus Issue: New Digital Technologies in Cardiology.

Shailaja, K., Seetharamulu, B., and Jabbar, M. (2018). Machine learning in healthcare: A
review. In 2018 Second international conference on electronics, communication and
aerospace technology (ICECA), pages 910–914. IEEE.

Shapley, L. S. (1953). 17. A Value for n-Person Games, pages 307–318. Princeton Uni-
versity Press, Princeton.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and shap:
Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’20, page 180–186, New York, NY, USA.
Association for Computing Machinery.

Srinivasu, P. N., Sandhya, N., Jhaveri, R. H., and Raut, R. (2022). From blackbox to ex-
plainable ai in healthcare: existing tools and case studies. Mobile Information Systems,
2022:1–20.

Tsamardinos, I., Charonyktakis, P., Papoutsoglou, G., Borboudakis, G., Lakiotaki, K.,
Zenklusen, J. C., Juhl, H., Chatzaki, E., and Lagani, V. (2022). Just add data: auto-
mated predictive modeling for knowledge discovery and feature selection. NPJ preci-
sion oncology, 6(1):38.


