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Abstract. This paper analyzes the application of surrogate models to improve
the efficiency of Gene Regulatory Network (GRN) inference from time-series
data. A Radial Basis Function (RBF) surrogate model was integrated with the
Penalized mAximum LikeLihood and pArticle Swarms (PALLAS) using a Mixed
Fish School Search (MFSS) algorithm to reduce the computational cost associ-
ated with evaluating the penalized log-likelihood (PLL) fitness function. Exper-
imental results on the p53-MDM2 negative-feedback loop GRN dataset demon-
strate that the surrogate-assisted approach significantly reduced fitness function
calls by 50% and 89% while maintaining the quality of the PLL metric, with this
showing the potential of surrogate models to accelerate GRN inference.

1. Introduction
Gene Regulatory Networks (GRN) are essential components of cellular biology, gov-
erning the regulation of gene expression and controlling various biological processes.
These networks consist of genes, their products (RNA and proteins), and the regulatory
relationships among them. Understanding the structure and dynamics of GRNs is vital
for deciphering complex biological systems, such as cellular responses to environmental
stimuli, developmental processes, and disease mechanisms. Consequently, accurate GRN
inference has become a key objective in systems biology and bioinformatics, aiming to
reconstruct these networks from high-throughput experimental data, particularly time-
series gene expression data. However, the inference of GRNs from such data presents
significant challenges due to the high dimensionality, noise, and inherent complexity of
the biological systems involved [Marku and Pancaldi 2023].

The Penalized mAximum LikeLihood and pArticle Swarms (PALLAS) algorithm
[Tan et al. 2020] is designed for inferring gene regulatory networks from noisy time-
series data. It integrates a Penalized Log-Likelihood (PLL) fitness function with the
Mixed Fish School Search (MFSS) algorithm, a optimization technique inspired by fish
schooling behavior. This approach allows PALLAS to handle both continuous and dis-
crete search spaces, making it well-suited for complex biological systems. The adaptabil-
ity of PALLAS to scenarios with or without prior knowledge of model parameters further
enhances its applicability in diverse biological contexts.

Despite the effectiveness of the PALLAS algorithm in GRN inference, the com-
putational cost associated with repeatedly evaluating the PLL function can be prohibitive,
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especially when dealing with large datasets or complex network structures. This computa-
tional burden arises from the necessity of performing numerous evaluations of the fitness
function during the optimization process, each of which is computationally expensive. To
address this challenge, researchers have explored the use of surrogate models as a means
to reduce the computational costs involved. Surrogate models are simplified representa-
tions of complex systems, constructed to approximate the behavior of expensive functions
while significantly lowering the computational burden [Ferreira et al. 2019]. These mod-
els are particularly useful in scenarios where the original model is too costly to evaluate
directly, as they can provide sufficiently accurate predictions at a fraction of the compu-
tational cost.

The use of surrogate models in meta-heuristics has gained considerable attention
due to their ability to accelerate optimization processes without compromising accuracy.
Meta-heuristics, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
and Fish School Search (FSS), are optimization techniques that guide the search for op-
timal solutions in complex spaces by combining exploration and exploitation strategies
[Sastry et al. 2005] [Kennedy and Eberhart 1995] [Bastos Filho et al. 2009]. Surrogate
models enhance these techniques by replacing costly function evaluations with cheaper
approximations, thereby reducing the overall computational time. This approach has been
successfully applied across various domains, including the optimization of motor designs
[Ibrahim et al. 2022], simulations of human movement [Eskinazi and Fregly 2016], and
power integrity analysis in electronic systems [Leal-Romo et al. 2018]. By integrating
surrogate models into these optimization frameworks, significant reductions in computa-
tional costs have been achieved, while maintaining or even improving the quality of the
solutions obtained.

Building on the advantages of surrogate models in various optimization scenarios,
their application in GRN inference provides a practical approach for reducing the com-
putational burden associated with optimization-based methods. By integrating surrogate
models within algorithms like PALLAS, the frequency of costly PLL function evalua-
tions can be decreased, which in turn allows the algorithm to allocate more resources to
exploring promising regions of the search space. This approach is particularly valuable
when dealing with large-scale time-series data, where the computational demands are of-
ten substantial. Surrogate-assisted optimization not only expedites the inference process
but also facilitates the exploration of more complex models that might otherwise be com-
putationally prohibitive.

This paper explores the integration of a Radial Basis Function (RBF) surrogate
model within the MFSS algorithm as part of the PALLAS framework for GRN inference.
The RBF model is employed to approximate the PLL function, which is a key component
of the PALLAS algorithm. By replacing the original PLL function by its RBF approxima-
tion during certain iterations of the optimization process, the number of PLL evaluations
required is significantly reduced. This surrogate-assisted approach is designed to maintain
the accuracy of the inferred networks while achieving substantial computational savings.
The effectiveness of this approach is demonstrated through a series of experiments on the
p53-MDM2 negative-feedback loop GRN dataset. This dataset, which involves the well-
studied interaction between the p53 tumor suppressor protein and its regulator MDM2,
serves as a benchmark for evaluating the performance of GRN inference algorithms. The



results highlight the potential of surrogate-assisted methods in enhancing the efficiency
and scalability of GRN inference, paving the way for more widespread application in
systems biology.

The structure of this paper is as follows: Section II presents a brief overview of the
employed algorithms, including PALLAS, the PLL function, FSS, MFSS, the surrogate
model, and the integration of MFSS with the surrogate model. Section III presents the
dataset used, the experimental setup, and the results obtained. Lastly, Section IV presents
the conclusion and identifies areas for future work.

2. Methods

The approach proposed in this work combines the PALLAS algorithm with the predic-
tions of surrogate models to reduce the number of calls to the fitness function and with this
reduce the overall cost of the process. This sections briefly describes PALLAS, its com-
ponents (PLL and MFSS), the radial Basis Function interpolation, which is the method
used for the surrogate model and the combining strategy used. For full details on the
algorithms and equations, please refer to the respective sources cited.

2.1. PALLAS

The PALLAS algorithm [Tan et al. 2020] leverages two key components: a PLL fitness
function and the MFSS algorithm. The PLL function is optimized using MFSS, an ad-
vanced form of the FSS algorithm [Bastos Filho et al. 2009], which is capable of operat-
ing in both continuous and discrete search spaces. PALLAS models regulatory interac-
tions with discrete dimensions and observational noise with continuous ones. It iteratively
updates these to maximize the inferred network’s likelihood, ensuring robustness to noise
in GRN inference. Designed for use with or without prior knowledge of model param-
eters, PALLAS supports RNA-seq and microarray time-series data, offering flexibility
across biological contexts.

2.1.1. Penalized Log-Likelihood

A PLL based on the implementation by [Tan et al. 2020] was used to assess the quality
of each individual in the algorithm and to train the surrogate model. Their PLL imple-
mentation focus on having the best fit to the data while having a sparse network struc-
ture with a small number of edges between genes. The likelihood calculation utilizes a
Boolean Kalman Filter [Braga-Neto 2011], implemented through auxiliary particle filter-
ing [Imani and Braga-Neto 2018]. Considering a sample data that consists of n indepen-
dent time series Y j
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where η > 0 is a regularization parameter, which has a default value of η = 0.01
based on the original implementation. Therefore, the PLL in Eq. 1 is the sum of the
average log-likelihood per time series and a negative value times the number of edges in
the model. Maximization of Eq. 1 thus encourages the model to both fit the data and be
sparse, i.e., contain a small number of edges between genes, consistent with biological
understanding.

2.1.2. MFSS

The approach used in this study was adapted from PALLAS [Tan et al. 2020], where the
authors introduce the MFSS algorithm, an extension of the FSS. The FSS algorithm was
created inspired on the collective behavior of fish schools in the search for food, where
each ”fish” gains ”weight” based on its performance, with heavier fish exerting greater
influence on the school’s movements. The algorithm is structured around four opera-
tors, each with different purposes, namely, the individual movement operator performs a
greedy local search, the feeding operator adjusts individual weights based on improve-
ments during the individual movement, the collective instinctive movement pushes the
school towards promising areas and lastly the collective volitive movement dynamically
balances exploration and exploitation based on the algorithm’s needs through expansion
and contraction of the school radius. The algorithm also reduces the step size at each
iteration [Bastos Filho et al. 2009]. The MFSS adaptation gives the algorithm the ability
to handle optimization problems involving both large continuous and discrete parameter
spaces simultaneously, as it’s necessary for the PALLAS algorithm. Algorithm 1 shows
the pseudo-code that suits both the FSS and MFSS, It’s important to note that all the
actions are done for all fish.

Algorithm 1 Pseudo-code of the FSS and MFSS algorithm.
1: initialize randomly all fish
2: for iteration = 1, 2, . . . , N do
3: Evaluate fitness function
4: Execute individual movement
5: Evaluate fitness function
6: Execute feeding operator
7: Execute collective instinctive movement
8: Execute collective volitive movement
9: Update step size

10: end for

2.2. Surrogate Model
In this study, we apply a surrogate model using Radial Basis Function interpolation to
approximate the PLL function from a limited set of data points. RBF is a method for
estimating values of unknown locations using a weighted sum of radial basis functions
centered at known data points. The weights are determined by solving a system of linear
equations, ensuring the interpolant passes through the given data points [Buhmann 2000].

The Python library PySOT [Eriksson et al. 2019] was utilized to implement the
surrogate model. After conducting a parametric analysis with Optuna [Akiba et al. 2019],



another Python library, RBF interpolation was chosen as the most effective strategy. This
analysis involved comparing RBF interpolation against other techniques, including Gaus-
sian Process Regression and Multivariate Polynomial Regression, to determine the opti-
mal approach the problem, and for this specific problem the RBF showed the best results.

2.3. Surrogate-assisted MFSS
The Surrogate-assisted MFSS (SMFSS) is the integration of the surrogate model into the
MFSS algorithm. The overall structure of the SMFSS remained the same as the MFSS,
however, the main difference was the use of the surrogate model prediction in the place
of the fitness function, which is computationally expensive, for a number of iterations. A
decision mechanism is used at each iteration to determine whether to use the original PLL
fitness function or the prediction from the surrogate model. This decision was made using
a parameter fitnessCheck, the PLL is computed every fitnessCheck iterations and new
points are added to the surrogate model, otherwise the surrogate predicts the fitness value.

The number of points added to the surrogate and their distribution significantly
impacted the algorithm’s performance. When all points were added during each fitness
check, the surrogate prediction eventually became more time-consuming than running the
original fitness function, especially towards the end of the algorithm’s execution. To ad-
dress this, we experimented with different strategies for selecting points to add: roulette
wheel selection, random selection, and selecting the best individuals. In all cases, we
added half of the population size. And a limit to the number of point was also defined,
once the limit on the number of points was reached, the surrogate model was reset, incor-
porating both the current population and the initial population as reference points. This
approach ensures a diverse exploration, as the starting population is random, while also
promoting exploitation by including all members of the current population. By empiric
experiments this limit was sixteen times the number of fish, this value should change
according to the computational cost of the fitness function. Our results indicated that
adding the better half of the population yielded the best outcomes. Algorithm 2 presents
the pseudo-code for the SMFSS.

3. Experimental Methodology And Results
3.1. Dataset
For the experiments, the p53-MDM2 negative-feedback loop GRN dataset was utilized
[Batchelor et al. 2009] which is depicted in Figure 1. In this system, p53 functions as
a protein that regulates crucial processes such as metabolism, fecundity and also tumor
suppressor. MDM2, another protein, that functions as to regulate p53 levels, helps to
maintain cellular balance [Vousden and Prives 2009].

The state vector for the system is X = (ATM, p53, Wip1, MDM2), while dna dsb
acts as an external Boolean input signaling DNA damage as p53 is a tumor-suppressing
gene that activates DNA repair mechanisms. The gene interaction parameters aij can be
read from Figure 1. For instance, p53 is activated by ATM and inhibited by WIP1 and
MDM2, represented as a21 = +1, a22 = 0, a23 = −1, a24 = −1.

This dataset contains 4 genes, a known network structure, and biases that the
PALLAS algorithm can utilize to improve its search process. In this experiment, we
assume negative regulation biases of bi = −1/2 for i = 1, 2, 3, 4. The transition noise



Algorithm 2 Pseudo-code of the SMFSS.
initialize randomly all fish

2: for iteration = 1, 2, . . . , N do
useSurrogate = iteration mod fitnessCheck ̸= 0

4: if useSurrogate then
Predict fitness with surrogate model

6: else
Evaluate fitness function with PLL

8: if pointsAdded < limit then
Add new points to the surrogate model

10: end if
end if

12: Execute individual movement
if useSurrogate then

14: Predict fitness with surrogate model
else

16: Evaluate fitness function with PLL
end if

18: Execute feeding operator
Execute collective instinctive movement

20: Execute collective volitive movement
Update step size

22: end for

parameter p is selected randomly in the interval [0.01, 0.1]. The microarray data model
has parameters µi ≡ µ = 30, δi ≡ δ = 20, σ2

i ≡ σ2 = 49, for i = 1, . . . , 4.

In the testing phase, the impact of incorporating or omitting prior information on
the surrogate model’s predictive capabilities was investigated. The dimensionality of the
problem increases significantly when the known data is not utilized, expanding from 9 to
24 dimensions. Specifically, the network dimensions increase from 4 to 16, and the bias
dimensions grow from 1 to 4, while other dimensions remain unchanged. This expansion
escalates the complexity of the problem.

3.2. Experiments

To evaluate the effectiveness of using surrogate models into the GRN inference problem,
firstly 30 independent runs of the original PALLAS algorithm were conducted to serve
as a reference for comparison, using the dataset both with and without prior informa-
tion. For these baseline runs, the parameter settings recommended by [Tan et al. 2020]
were used, as detailed in Table 1. Subsequently, an optimization procedure was applied
to tune the parameters for both the original PALLAS and the SMFSS version using Op-
tuna [Akiba et al. 2019]. With the optimized parameters, 30 runs for each version were
executed.

The optimal parameter values for the SMFSS can differ from those of the
original PALLAS algorithm. Considering that and accounting for the introduction of
a new parameter, fitnessCheck, we performed a parameter optimization using Op-



Figure 1. p53-MDM2 negative-feedback loop GRN [Tan et al. 2020].

Table 1. Default Parameters for PALLAS Algorithm
Value

Number of fish 3 * number of dimension
Iterations 5000
Initial step 0.1 (for all dimension)
Final step 0.00001 (for all dimension)

tuna [Akiba et al. 2019], optimizing parameters for both the original PALLAS and the
surrogate-assisted version. This optimization process explored the initial and final steps
for each dimension, the number of fish, and the fitnessCheck parameter.

While each algorithm had a different number of fish, we maintained a consistent
computational budget by multiplying the Number of fish and Iterations, as defined in Ta-
ble 1. The optimal values identified by Optuna for the surrogate and PALLAS versions
are presented in Table 2 and Table 3, respectively. In the second experiment, the number
of iterations was increased to account for the higher computational budget required due
to the increase in problem dimensions. This adjustment aligns with the budget defini-
tion from the original work [Tan et al. 2020], which scales with the dimensionality of the
problem. The parameters net, bias, baseline, delta, and variance represent dimensions of
the problem. The fitnessCheck value was different for the execution with and without
prior information, being 9 for the case with and 2 for the case without.

3.3. Results

The tests were categorized into two groups: those utilizing prior information and those
without. In each group, we evaluated the original PALLAS algorithm with its recom-
mended parameters, the same algorithm with parameters optimized using Optuna, and
the SMFSS with parameters also optimized by Optuna. In both scenarios, we observed
a performance improvement, in the form of a reduction in the number of fitness function



Table 2. Optuna Parameters for SMFSS
Value

Number of fish 206
Iterations 653
Fitness Check 9 and 2

Initial step Net Bias Baseline Delta Variance
0.062 0.033 0.076 0.044 0.025

Final step 0.007 0.006 0.005 0.003 0.004

Table 3. Optuna Parameters for PALLAS version
Value

Number of fish 68
Iterations 1979

Initial step Net Bias Baseline Delta Variance
0.095 0.061 0.025 0.034 0.019

Final step 0.004 0.008 0.003 0.006 0.006

evaluations required to achieve statistically equivalent results.

For the tests using prior information, the overall final results are shown in table 4
and the convergence curves can be seen in Figure 2. The results of the Mann-Whitney U
Test comparing the best results from PALLAS and SMFSS have a U Statistic of 508.00
with a p-value of 0.3953. This indicates that there is not enough evidence to reject the
null hypothesis, suggesting that the differences in the distributions of results between the
two algorithms are not statistically significant. The box plot of the final results for each
algorithm can be seen in Figure 3.

With the fitnessCheck value of 9, the SMFSS evaluated the original fitness func-
tion only 72 times out of a total of 653 iterations. This represents 11.02% of the total iter-
ations, resulting in an 88.98% reduction in the number of fitness function calls. This was
realized while maintaining results that show no statistically significant difference and, it
can be seen in Figure 2, the surrogate version achieves a performance comparable to the
other versions while requiring far fewer calls to the fitness functions.

Table 4. Results for execution with prior information
Algorithm Version PLL Score Std. Dev.
PALLAS - orig. params 16.78 0.15
PALLAS - optm. params 16.74 0.06
SMFSS - optm. params 16.76 0.11



Figure 2. Convergence curve for the algorithms using prior information

Figure 3. Box plot for the algorithms using prior information

For the experiment without prior data, the Table 5 presents the results, Figure 4
displays the convergence curve and Figure 5 the box plot for the end result. A Mann-
Whitney U Test comparing the best PALLAS version, with parameters optimized by



Optuna, and the SMFSS yielded a U Statistic of 478.00 and a p-value of 0.6843. This
suggests no statistically significant difference in their result distributions.

Despite having a lower fitnessCheck of 2, this still halves the number of fitness
function calls with the surrogate model prediction happening every other iteration. As
Figure 4 shows, despite not having a convergence as fast as the PALLAS with Optuna, it
still had a relative constant convergence and at the end of the defined budged it achieve
results on par with the others versions with half of the number of fitness evaluations.

Table 5. Results for execution without prior information
Algorithm Version PLL Score Std. Dev.
PALLAS - original params 17.73 0.18
PALLAS - optm. params 17.72 0.09
SMFSS - optm. params 17.73 0.19

Figure 4. Convergence curve for the algorithm without prior information

4. Conclusion
This study has demonstrated the potential effectiveness of surrogate models, in accelerat-
ing GRN inference from time-series data using meta-heuristics and PLL as the metric. By
integrating RBF models into the PALLAS-MFSS framework, a reduction was achieved in
the number of fitness function calls of 50% and 89%, without compromising the quality of
the end results. This efficiency gain happens in two scenarios with different complexities,
showing the promise in this approach for making GRN inference more feasible for larger
and more complex datasets, and with this helping the understanding of gene regulatory
mechanisms.



Figure 5. Box plot for the algorithms not using prior information

For future work, there are several possibilities of exploration. Evaluating the ap-
proach on diverse datasets, varying in size, number of genes, and network structures,
will ensure its generalizability and robustness. Experimenting with alternative surrogate
models like neural networks, decision trees, or random forests could further enhance effi-
ciency or accuracy in specific scenarios. Additionally, employing hybrid approaches with
multiple surrogate models simultaneously could leverage their strengths for even better
performance. By pursuing these research directions, it’s possible to improve both the ef-
ficiency and effectiveness of GRN inference, making it a more accessible and powerful
tool for studying gene regulation.
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