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Abstract. Predicting the binding mode and affinity of small molecules to pro-
teins is key to understanding their interaction. Empirical scoring functions are
commonly used by docking programs, but accurately predicting them remains
challenging. Docking programs can generate ligand conformations similar to
crystallographic structures, yet scoring functions often struggle to identify the
correct pose. This study employs Graph Attention Networks (GAT) to learn
ligand-protein contact information and re-rank docking poses. Using PDBbind-
core data, docking calculations with AutoDock Vina generate binding poses,
evaluated by contacts and RMSD. Close contacts are mapped using BINANA,
and bipartite graphs are created with atomic descriptors using RDKit.

1. Introduction
Research in the area of protein-ligand docking explores possible binding positions of the
ligand on a specific molecular target and also attempts to predict the binding affinity. That
can help to understand the molecular interaction between these macromolecules and small
ligands (substrate, drugs, natural compounds), which is crucial for scientists involved in
drug design and discovery nowadays. Identifying new drug candidates requires an under-
standing of the most important chemical elements that guide ligand-protein interactions
in relevant biological targets [Meng et al. 2011]. The docking scoring function is used
to rank the best binding orientations, but the highest-ranked solution is not always the
position that reproduces the best orientation [Ramı́rez and Caballero 2018].

Therefore, as effective as they may be, docking software has considerable limita-
tions such as a lack of confidence in the ability of scoring functions to provide accurate
binding energies. This stems from the fact that some intermolecular interaction terms are
difficult to predict accurately, such as the solvation effect and entropy change. Moreover,
some intermolecular interactions are rarely considered in scoring functions, despite being
proven to be significant [Meng et al. 2011]. Among the various computational tools used
in bioinformatics, machine learning techniques have proven to be especially useful for the
analysis and interpretation of biological data [Greener et al. 2022]. It is a computational
approach that allows a program to learn from data without being explicitly programmed
to do so. Recent studies have demonstrated the effectiveness of deep learning methods,
including Graph attention neural networks (GATs) [Velickovic et al. 2017], in improving
the accuracy of docking predictions. For instance, researchers [Yuan et al. 2021] utilized
GATs to model the affinity between proteins and ligands. This study aims to develop a
tool for reclassifying docking poses generated by docking algorithms [Dias et al. 2008].
The tool utilizes a GAT network to process bipartite graphs representing the contact
map between a ligand and a receptor [Imambi et al. 2021]. Atoms in these graphs
are represented as nodes with associated atomic descriptors, allowing the network to



evaluate the probability of correctness for each pose. To achieve this, we use the
PDBbind-core data [Su et al. 2018] and generate docking poses with AutoDock Vina
[Eberhardt et al. 2021a]. These poses are then evaluated based on contacts and RMSD.
Close contacts are mapped using BINANA [Durrant and McCammon 2011], and bipartite
graphs are constructed with atomic descriptors obtained from RDKit [Landrum 2013].

2. Methods and details
In Figure 1, we present a flow diagram with the steps of the methodology proposed.
The dataset used is PDBbind [Liu et al. 2015], which provides experimentally vali-
dated binding structures of protein-ligand complexes. Each sample in the PDBbind
core dataset is prepared automatically using PDBFixer to correct protein structures
[Eastman et al. 2017]. It identifies and fixes missing residues and atoms, adds hydro-
gens at pH 7.0, standardizes non-standard residues, and removes unwanted heteroge-
neous molecules. The box dimensions were determined based on the center of mass
of each ligand, with a 10 Å buffer for each dimension. The exhaustiveness was set to
50 [Agarwal and Smith 2023]. Then docking calculations were performed to generate
possible binding poses of the protein-ligand complex using the AutoDock Vina software
[Eberhardt et al. 2021b]. When building the dataset, the number of docking poses gen-
erated for each complex can vary. However, the more poses generated per complex, the
greater the imbalance in the distribution of labels. For consistency with existing literature,
we opted to employ ten poses for each complex [Plewczynski et al. 2011]. Nevertheless,
it is noteworthy that the model, after training, possesses the capability to evaluate any
number of poses.

Figure 1. Workflow to generate the training data

2.1. Dataset

The dataset used for training this model was derived from the PDBind core set, specif-
ically the 2016 release [Su et al. 2018]. This release includes 285 protein-ligand com-
plexes selected from the refined set (v.2016) by applying the following criteria. To reduce



redundancy, proteins exhibiting over 90% sequence similarity were grouped together,
from which five representative complexes were selected according to their binding affin-
ity (BA) values. This selection included the complex with the highest BA, the one with
the lowest, and three others that represented evenly spaced BA values. Furthermore, each
complex’s electron density map was examined for quality assurance, and any identical lig-
ands or stereoisomers were omitted from the final dataset [Su et al. 2018]. The variation
in electron density map quality between the datasets resulted in a significant difference
in results for the proposed model architecture. Consequently, the model exhibits good
performance when trained and tested on the core set, but the same does not happen for
the refined set, even though the latter possesses higher redundancy. Therefore, the results
presented in this study are derived exclusively from the core set.

Table 1 shows the amount of data that we started with and the amount that re-
mained to feed the model. We performed docking for all 285 complexes. During the
processing pipeline, several factors reduced the amount of data (number of poses) avail-
able. For example:

• Vina Autodock did not generate all 10 expected poses for some complexes.
• Complexes not processed correctly by the libraries used, such as RDKit.
• Descriptors were not properly assigned to the complexes.
• Errors in RMSD calculation (for docking results that were too far off).

The labelling process is rigid, meaning that, in most cases, only one pose
per complex is labeled as positive, therefore it’s also unbalanced dataset problem
[Ganganwar 2012].

Table 1. Model Performance Metrics

Qty. pdbs docked 285
Successfully processed graphs 1948
Class distribution Incorrect: 1802 (92.5%), Correct: 146 (7.5%)

2.2. Labelling

The data generation process involves a re-docking experiment, in which the protein-ligand
complexes have known ligand binding positions. The ligands were removed from their
respective binding sites, and docking simulations were subsequently performed to pre-
dict the ligand positions. Following that, an evaluation step was undertaken to assess and
classify the outcomes into good or poor predictions for each pose [Morrone et al. 2020].
Despite the limited amount of data, we opted to automatically define positive and negative
classes. This approach is crucial for ensuring that the labeling technique remains indepen-
dent of the dataset size. To evaluate redocking results, it’s a common practice to use the
RMSD, which compares the predicted pose with the experimental result. However, rely-
ing solely on RMSD can be insufficient for a few reasons. A predicted pose might show
a low RMSD yet form interactions with the protein that differ greatly from those seen
in experiments. Conversely, a high RMSD might conceal an accurate binding mode if it
preserves the critical interactions but includes a flexible ligand region that is incorrectly
positioned, distorting the RMSD [Baber et al. 2009]. Therefore, we adopted a consensus



approach based on the RMSD, calculated using the CalcRMS function available in RD-
Kit [Landrum 2013], along with a graph similarity metric that we developed. To evaluate
this similarity between docking results GDock = {(u1, v1), . . . , (un, vn)} and experimental
data GExp = {(u1, v1), . . . , (um, vm)}, where, (ui, vi) denotes pairs of atoms, with ui as
an atom from the protein and vi as an atom from the ligand, such that these atoms are
located less than 4 Å apart. We use the following equation (1) to denote it.

Similarity Index =
|{(ui, vi) ∈ GExp | (ui, vi) ∈ GDock}|

|GExp|
(1)

Here, |{(ui, vi) ∈ GExp | (ui, vi) ∈ GDock}| denotes the number of common pairs
between GExp and GDock, and |GExp| represents the total number of pairs in GExp.

2.3. Data preparation

After obtaining the docking results, the next step was to identify the nearby contacts
between the protein and ligand for each complex, using the software BINANA (Bind An-
alyzer Tool) [Durrant and McCammon 2011]. For each pose: the atom index, atom name,
and distance between atoms were collected. Using the RDKit library, several properties
of each atom were extracted: i) the atom’s formal charge, ii) the element’s symbol, iii)
the hybridization state, iv) the total number of hydrogen atoms bonded to the atom, v) the
number of unpaired electrons, vi) whether the atom is part of an aromatic substructure
and the vii) mass [Morrone et al. 2020].

2.4. Graph Representation

The interaction within the contact region of the complex protein-ligand was mapped as
a graph [Morrone et al. 2020]. Using BINANA, we identified close contacts between
receptor and ligand atoms, defined as those within 4 angstroms of each other, according
to BINANA’s criteria for close contacts [Durrant and McCammon 2011].

Figure 2. The BINANA soft-
ware and a Python script were
used to detect and extract
close-contact atoms informa-
tion, where close contact refers
to all atoms within 4 Å of each
other.

Figure 3. Using PyTorch, a bi-
partite graph is created, where
atoms serve as the nodes, de-
fined by the atomic descriptors.
The distance between atoms is
also computed, and the edges
represent the close-contact.



For example, in Figure 2, we have Pose 1 of the 4EOR complex. The purple dots
represent receptor atoms that are close to the ligand. When examining the atom with index
75, it appears three times due to the presence of ligand atoms 22, 23, and 24, which are
within 4 angstroms of atom 75. With these contacts, a bipartite graph is created in which
the atoms are the nodes defined by the atomic descriptors generated using the RDKit.

2.5. Model architecture

Molecular data can be represented in three-dimensional spaces as: 3D graphs, 3D sur-
faces, and 3D voxels [Liu et al. 2023]. However, the latter two approaches exhibit sensi-
tivity to the spatial orientation of molecular complexes and frequently fail to accurately
capture the intricate details of atomic bonding. Since molecular complexes consist of pro-
tein and ligand molecules, they can naturally be modeled as graphs, where atoms serve as
nodes and bonds as edges. Graph neural networks (GNNs) provide an ideal framework for
representing such molecular structures, with the advantage of being inherently invariant
to changes in orientation of the entry data [Réau et al. 2023].

Attention mechanisms have shown great success across a range of sequence
processing tasks, including natural language processing, speech recognition and others
[Niu et al. 2021]. On graphs, attention-based models have been developed to generalize
the attention operator, assigning different importance to neighboring nodes, which helps
to improve predictive performance. Recognizing the strengths of this approach, we de-
veloped a model using the graph attention network (GAT) architecture.

The deep learning architecture is represented in figure 4 and begins with a GAT
layer, which employs attention mechanisms to process node features and capture relation-
ships. After the initial convolution, the receptor atoms have their representations updated
to include information about the neighboring ligand atoms [Velickovic et al. 2017]. The
new representation is aggregated using global mean pooling to create a representation that
feeds into the fully connected layer [Imambi et al. 2021], which produces a single output
representing the probability of correctness of the pose [Morrone et al. 2020].

Figure 4. The bipartite object is fed into the Graph Attention Network (GAT) architecture.
The final output is the probability of correctness of the pose, that was represented as a
graph.

The architecture of the model is also illustrated in Table 2, which depicts the input
data and the changes in dimensions that occur at each layer.



Table 2. Model Architecture and Data Flow

Layer/Operation Input Dimensions Output Dimensions

GAT Layer (Conv1) xs and xt : [Natoms × 7] [Natoms × 100]
ReLU Activation [Natoms × 100] [Natoms × 100]
Global Mean Pooling [Natoms × 100] [Batch size × 100]
Fully Connected Layer [Batch size × 100] [Batch size × 1]

Layer Descriptions:

• GAT Layer (Conv1): Processes the input features of ligand and receptor atoms,
where each atom is represented by 7 features. The output is a 100-dimensional
feature vector for each atom, capturing complex interactions.

• ReLU Activation: Applies the Rectified Linear Unit activation function element-
wise to the output from the GAT layer, introducing non-linearity into the model.

• Global Mean Pooling: This layer combines the features of individual atoms to
create a single representation for each graph (Batch = 250 graphs). It does this
by averaging the feature vectors of all atoms within each graph, resulting in one
summarized feature vector per graph.

• Fully Connected Layer: Reduces the graph-level features to a single scalar out-
put per graph, which predicts the correctness of the docking pose.

The first layer is a GAT, the input features are represented as matrices xs and xt,
corresponding to the ligand and receptor, respectively. Both matrices have dimensions of
[Natoms × 7], where Natoms denotes the number of atoms in each entry and 7 the number
of features. Additionally, the first convolutional layer (conv1) includes a hidden layer
with a dimensionality of 7. The attention mechanism in the GAT enhances local rela-
tionships within the graph, improving node embeddings. To address class imbalance,
we adopt a custom loss function, BalancedBCEWithLogitsLoss, which applies a posi-
tive class weight of 13.5, this weighted loss helps the model prioritize learning from the
minority class during training. The Adam optimizer is used with a learning rate of 0.05
and a weight decay of 0.01 to introduce regularization and avoid overfitting. A PyTorch
DataLoader is utilized to efficiently organize the data into mini-batches, streamlining the
training process [Imambi et al. 2021]. The argument follow batch=[’x s’, ’x t’] is em-
ployed to ensure that specific node feature sets, remain consistent across batches.

3. Results

The dataset is randomly divided into training and validation sets [Yang et al. 2023], aim-
ing to develop a model capable of operating effectively with proteins that exhibit high
similarity to those present in the training set, the data were split as follows: 77% allocated
for training and 23% reserved for testing. The results presented below include the metrics
obtained from evaluating the models on a test set consisting of 448 poses.



Table 3. Model Performance Metrics

Model name Precision Recall Auc pr Auc roc f1 Batch Opt. param
model 188 0.11 0.67 0.11 0.63 0.19 200 f1
model 174 0.14 0.55 0.13 0.66 0.22 250 f1
model 180 0.13 0.52 0.15 0.67 0.2 250 recall
model 177 0.12 0.48 0.13 0.66 0.2 250 f1
model 183 0.14 0.48 0.14 0.67 0.21 250 recall
model 182 0.13 0.42 0.13 0.66 0.2 250 recall
model 175 0.12 0.36 0.11 0.62 0.18 250 f1
model 179 0.09 0.36 0.1 0.62 0.15 250 recall
model 189 0.15 0.33 0.14 0.67 0.21 250 f1
model 184 0.17 0.3 0.15 0.67 0.22 500 f1

Due to the pronounced class imbalance, the model’s effectiveness is signifi-
cantly influenced by the configuration of the loss function parameters [Li et al. 2021].
In this work, we adapt the Binary Cross Entropy with Logits Loss function
[Ruby and Yendapalli 2020], to adjust the class weights and reflect the disparity between
classes using the parameter pos weight [Xiong et al. 2021]. The table 3 shows the ten
best results obtained in the experiments, ranked by recall. Each line represents an exper-
iment with a different set of parameters. If a certain type of parameter is not represented
in the columns, it is because it is set the same for all models. The F1 score was employed
as the criterion for selecting the epoch in which the model should be saved [Yang 2001].
The model was stored whenever there was an improvement in it. We opted not to use the
AUC-ROC as the primary metric for model selection, as it is well-documented that this
metric can lead to misleading conclusions when applied to imbalanced datasets. Addi-
tionally, we also evaluated the AUC-PR (Precision-Recall curve), which is more suitable
for evaluating models on imbalanced datasets, as it focuses on the performance of the mi-
nority class without being skewed by the majority class’s performance. Considering the
operational principles of this metric and the observed data distribution, which comprises
1802 incorrect (92.5%) and 146 correct samples (7.5%), any AUC-PR value exceeding the
baseline of 0.075 indicates that the model has acquired meaningful patterns from the data
[Sofaer et al. 2019]. The results demonstrate a capacity for learning across various trials,
though there is some variation. Thus, real performance should be evaluated cautiously
considering all results.

When analyzing the results of the best ranked experiments in figure 5, an imme-
diate difference is observed in the distribution of scores assigned by the model to the
classes identified as positive and negative. As expected, the model assigned higher prob-
abilities to classes known to be positive. The second relevant aspect is that the model
shows superior performance in predicting positive instances while struggling with neg-
ative instances, the distribution of negative classes has a high median influenced by the
parameter that adjusts for the unbalanced data [Rezaei-Dastjerdehei et al. 2020].

The model that obtained the most satisfactory metrics so far is named model188,
due to its results for F1 and recall metrics. The loss curve for this model is presented
in the Appendix A. The recall metric received special attention, aiming to maximize the
model’s ability to correctly identify positive cases and minimize the rejection of these



cases.

A - Model 188 B - Model 174 C - Model 180

Figure 5. Box plots of different models.

The figure 6 illustrates the probability density profile for both classes. In fig-
ure 7, we identify the optimal threshold, which corresponds to the point where Youden’s
J statistic is maximized at 0.62, balancing precision and recall [Youden 1950]. However,
we opted to prioritize higher recall.

Figure 6. Distribution of probabilistic
predictions made for classes known to
be positive and negative.

Figure 7. TTPR (True Positive Rate)
and FPR (False Positive Rate) with cut-
off Point at 0.55 and Youden’s J Value.

Using the box plot in figure 5-A as a reference, we selected the lower limit of the
positive class as our threshold. A visual inspection of the model’s box plot indicates that
this threshold effectively removes approximately 25% of incorrect data, with only three
outliers from the positive class being discarded. As shown in figure 7, the threshold of
0.55 results in an acceptable reduction of false negatives while maintaining a low number
of false negatives [Frederick and Bowden 2009]. For comparison, it is visually evident
from the box plot in figure 5-A that the median of the negative class is lower than the first
quartile of the positive class. This suggests that approximately 50% of the negative cases
could potentially be removed if we were willing to sacrifice around 25% of the positive
cases, a good result for an unbalanced set.



Figure 8-A Figure 8-B

Figure 8-A illustrates the class distribution after applying the model as a filter to
the testing dataset, using a threshold of 0.55. The proportion of positive classes increases
from 7.7% to 9.3%, this change is not visually significant due to the class imbalance
present in the dataset. However, in figure 8-B, we see that when applying the filter to a
subset containing only the poses ranked first by AutoDock Vina, the increase becomes
more pronounced, as this subset represents a less imbalanced dataset, increasing from
38.2% to 48.7%.

4. Conclusion

The experiments conducted throughout this study provided insights into the performance
and challenges associated with the use of Graph Attention Networks (GAT) in the analysis
of protein-ligand contact maps represented as bipartite graphs. The developed model
showed promising capabilities for interpreting information in the graphs with the core set
dataset. When applied to the PDBbind refined set, the model did not achieve the expected
performance, even after the selection of subsets closer to the core set profile. An analysis
of the literature revealed that the difference was not related to the quality of the proteins’
resolution or binding affinity, but rather to the electron density map, which stood out as
a crucial parameter for differentiating the datasets [Su et al. 2018]. This result highlights
the importance of the electron density map in the analysis and selection of data for model
training. Given the limited dataset, calculating useful ranking metrics was not feasible.
Additionally, the evaluation of the importance of the ”pose rank” descriptor, which is the
rank generated by AutoDock vina, revealed a significant limitation in the current model,
which showed a tendency to prioritize this descriptor exclusively, ignoring other relevant
factors. This challenge was addressed by opting for a model that does not include the
”rank” information.

The choice of model was primarily based on the F1 and recall, indicating that
the model named model188 has achieved the best results so far. The tests suggest that
the model functions as an effective filter for eliminating negative cases, saving scientists
time. However, to better validate the model’s ranking capability, a larger dataset is needed.
The results provide a solid foundation for the development of more robust and accurate
models, with an emphasis on improving data quality by comprehensively considering
descriptors. The findings highlight the necessity of adaptive approaches and balancing
techniques to tackle the challenges associated with class imbalance and to enhance the
overall performance of the model. We will enhance the model by incorporating atomic



reactivity descriptors derived from Density Functional Theory (DFT) [Orio et al. 2009],
which are expected to address the limitations related to electron density maps.

Data and Software Availability

All the protein-ligand data are available through the PDBbind website at
http://www.pdbbind.org.cn. The project model and pipeline are available on GitHub:
https://github.com/glauco-endrigo/BindRanker.
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Réau, M., Renaud, N., Xue, L. C., and Bonvin, A. M. (2023). Deeprank-gnn: a graph
neural network framework to learn patterns in protein–protein interfaces. Bioinformatics,
39(1):btac759.

Rezaei-Dastjerdehei, M. R., Mijani, A., and Fatemizadeh, E. (2020). Addressing imbal-
ance in multi-label classification using weighted cross entropy loss function. In 2020 27th
national and 5th international iranian conference on biomedical engineering (ICBME),
pages 333–338. IEEE.

Ruby, U. and Yendapalli, V. (2020). Binary cross entropy with deep learning technique
for image classification. Int. J. Adv. Trends Comput. Sci. Eng, 9(10).

Schafer, R. W. (2011). What is a savitzky-golay filter?[lecture notes]. IEEE Signal pro-



cessing magazine, 28(4):111–117.

Sofaer, H. R., Hoeting, J. A., and Jarnevich, C. S. (2019). The area under the precision-
recall curve as a performance metric for rare binary events. Methods in Ecology and
Evolution, 10(4):565–577.

Su, M., Yang, Q., Du, Y., Feng, G., Liu, Z., Li, Y., and Wang, R. (2018). Comparative
assessment of scoring functions: the casf-2016 update. Journal of chemical information
and modeling, 59(2):895–913.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al. (2017).
Graph attention networks. stat, 1050(20):10–48550.

Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A.,
et al. (2021). Admetlab 2.0: an integrated online platform for accurate and comprehensive
predictions of admet properties. Nucleic acids research, 49(W1):W5–W14.

Yang, Y. (2001). A study of thresholding strategies for text categorization. In Proceedings
of the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 137–145.

Yang, Z., Zhong, W., Lv, Q., Dong, T., and Yu-Chian Chen, C. (2023). Geometric in-
teraction graph neural network for predicting protein–ligand binding affinities from 3d
structures (gign). The journal of physical chemistry letters, 14(8):2020–2033.

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1):32–35.

Yuan, H., Huang, J., and Li, J. (2021). Protein-ligand binding affinity prediction model
based on graph attention network. Math. Biosci. Eng, 18(6):9148–9162.

Appendix A
The loss curve for the model188 is illustrated in Figure 9. The red line represents

the loss curve that has been smoothed using the Savitzky-Golay filter [Schafer 2011].

Figure 9: Loss curve for model 188
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