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Abstract. We present a pipeline for exploring genomic diversity in metagenomic
datasets at the species and strain levels. To achieve accurate classifications in-
dependent of taxonomy labels, we introduce the concept of Genome Reference
Set (GRS), modeled using the Maximal Independent Set problem for undirected
graphs. For a given user-defined target genus, we build its GRS from Gen-
Bank genomes and use it for metagenomic contig classification using BLASTn.
Additional phylogenetic processing allows the identification of putative novel
species. We show that our pipeline can achieve better results than general-
purpose tools, and apply the pipeline to the MetaSUB dataset, identifying two
putative novel strains and one putative new species of Acinetobacter.

1. Introduction
Most bacterial and archaeal species have not been cultivated in laboratories
[Steen et al. 2019]. This means that the vast majority of microbes remain unknown (the
so-called Microbial Dark Matter). The use of metagenomics techniques has contributed
to shed considerable light into this Microbial Dark Matter. Over the last 20 years, a
large number of metagenomic datasets have been generated, and today there are several
thousands of publicly available shotgun metagenomic datasets sampled from different
environments and hosts [Nayfach et al. 2021]. However, extracting accurate information
about the presence and relative abundance of microbial taxa in metagenomic datasets con-
taining millions of sequences is still a challenging task. One evidence is the competition
Critical Assessment of Metagenome Interpretation (CAMI) [Meyer et al. 2022], which
offers an opportunity for researchers to compare software for taxonomic classification
using controlled metagenomic datasets.

Here we propose a novel pipeline for taxonomic classification of metagenomic
contigs. Our aim is to provide a tool that provides more accurate results at the species and
strain levels than general purpose classification tools such as Kraken2 [Wood et al. 2019]
or MMseqs2 [Steinegger and Söding 2017]. We assume the user of our tool has a prede-
fined list of target genera or target species, and he or she wants to determine the presence
and relative abundance of species from those target genera or strains from target species
in metagenomic datasets of interest. In its present state, the tool is capable of analyzing
contigs only, that is, pre-assembled metagenomic datasets of raw reads.

The paper is structured as follows. In Section 2 we present details of the pipeline.
In Section 3.1 we compare the performance of using BLAST [Altschul et al. 1997] with
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the criteria we employ in the pipeline with the programs Kraken2 [Wood et al. 2019] and
MMseqs2 [Steinegger and Söding 2017]. In Section 3.2 we present results running the
pipeline on the MetaSUB dataset.

2. Methods

We assume the input to the pipeline is a list of target genera and a single file in FASTA
format containing contig sequences originated from the assembly of metagenomic reads,
from one or more samples. As a pre-processing step, we remove from the file any se-
quences shorter than 500 bp.

2.1. Genome Reference Set

For each target genus, we build a Genome Reference Set (GRS) obeying the following
rule: the GRS should contain at least one representative of every species of the target
genus with a publicly available genome sequence, subject to the following restriction: we
do not include draft genomes with more than 100 contigs, reasoning that more fragmented
genomes have lesser quality and therefore may negatively impact our classification accu-
racy.

Our method for GRS construction also includes the requirement that it should
be as nonredundant as possible in terms of genome similarity (which means that we do
not rely on taxonomy labels to reduce eventual redundancy, an important feature of our
methodology). We model this redundancy minimization problem using the Maximum
Independent Set (MIS) problem, as follows. Given an undirected graph G(V,E), the MIS
is a subset of nodes V ′ ⊆ V such that: ∀u, v ∈ V ′, (u, v) /∈ E; and V ′ has maximum size.
MIS is an NP-hard problem [Garey and Johnson 1979]. However, if we relax the problem
so that we require V ′ to be of maximal size instead of maximum size, a solution can be
efficiently found using a greedy algorithm. One such greedy algorithm was proposed
by Luby [Luby 1985], originally developed for distributed processing. Luby’s algorithm
finds the Maximal Independent Set (MLIS) in O(log n) iterations (where n = |V |), and
can be written as shown in Algorithm 1.

The construction process of the GRS for a given genus is illustrated in Fig-
ure 1. All available genomes in GenBank are downloaded; genomes with more than
100 contigs are removed. Genomes are then compared against each other using fastANI
[Jain et al. 2018]. After that, a genome graph is built according to the following rules: (a)
each genome is a node; and (b) if two genomes have ANI score greater or equal to 98%,
they form an edge. Our implementation of Luby’s algorithm as shown in Algorithm 1
then reduces the genome set to an MLIS of genomes. Finally, the genome of every species
not represented in the MLIS (having been excluded from the MLIS by Luby´s Algorithm)
is added back to the set, to ensure that the GRS does have every species represented. This
final set is the GRS.



Data: Undirected graph: G = (V,E)
Result: Maximal Independent Set (MLIS): I ⊆ V
I ← ∅;
G′ = (V ′, E ′)← G = (V,E);
while V ′ ̸= ∅ do

I ′ ← ∅ /* Temporary Independent Set */
for v ∈ V ′ do

rv ← random number ∈ [0, 1]
end
for v ∈ V ′ do

N(v)← {u ∈ V ′ \ {v}|(u, v) ∈ E ′};
if rv > ru,∀u ∈ N(v) then

add v to I ′

end
end
I ← I ∪ I ′;
Y ← I ′ ∪N(I ′);
G′ = (V ′, E ′)← G[V ′ \ Y ] the subgraph induced by V ′ \ Y

end
Algorithm 1: Pseudo-code for Luby’s Algorithm

Note that the GRS may have pairs of genomes (a, b) whose ANI value is greater
than or equal to 98%; the existence of such pairs means that a and b belong to different
species (or at least have been labeled as such) and yet their ANI value suggests that they
should belong to the same species. Conversely, the GRS may contain genomes a and b
such that a and b belong to the same species and yet their ANI value is less than 98%. We
consider these features to be important properties of the GRS, making it less dependent
on taxonomic labels.

Figure 1. GRS construction workflow.

2.2. Identification Pipeline

Once the GRS is built, contig classification is done as illustrated in Figure 2 (upper path).
The metagenomic dataset is searched with BLASTn against the GRS. Only the first hit
is considered. If the first hit has query coverage at least 80% and e-value ≤ 10−10 then



it is classified according to the percent identity (PI) value. Sequences with PI ≥ 98%
are added to the “known species” set of contigs, with the same species label of the first
BLAST hit. Sequences with PI < 98% are added to the “putative new species” set,
without any taxonomic label.

Figure 2. Identification pipeline workflow.

The known species set constitutes the catalog of known species in the in-
put metagenomic dataset, possibly incremented with additional elements depending
on the results of the next step, represented by the lower path in Figure 2. In that
path, the contigs are clustered with the MetaBAT2 binning program [Kang et al. 2019].
Then, all resulting bins are evaluated in terms of completeness and contamination with
CheckM2 [Chklovski et al. 2023].

Because the input metagenomic dataset may contain DNA from several separate
samples, we have found it necessary to separate contigs in a bin by originating sample. We
call the new bins obtained in this way sub-bins, and the process is illustrated in Figure 3.
Note that the number of originating samples in bins varies according to bin. Sub-bins are
classified with GTDB-tk [Chaumeil et al. 2022]. Sub-bins classified as a known species
are assigned to the known species set (rightmost vertical arrow in Figure 2). Otherwise,
the sequences belonging to sub-bins with at least 50% completeness are annotated with
PGAP [Tatusova et al. 2016] and phylogenetically analyzed.



Figure 3. Sub-binning process illustration considering a pool of N samples.

For each sub-bin obtained that passes the completeness threshold, a phylogenetic
tree is inferred using the core-genome of the sub-bin and representative genomes of the
target genus, selected from the GRS. Orthologous genes are determined with GetHo-
mologues [Contreras-Moreira and Vinuesa 2013], using the OrthoMCL [Li et al. 2003]
algorithm and coverage and identity thresholds of 80%. Orthologous genes are aligned
with MAFFT [Katoh et al. 2002] with a maximum of 1,000 iterations. Alignment regions
with gaps are manually removed and the final alignments are concatenated. The phyloge-
netic tree is then constructed with IQtree2 [Minh et al. 2020], using the substitution model
defined by ModelFinder [Kalyaanamoorthy et al. 2017] and 1,000 bootstrap replicates.

3. Results
3.1. Classification performance comparisons
Comparisons between BLASTn classification and taxonomic classification tools Kraken2
and MMseqs2 were performed on marine and plant-associated datasets from CAMI2 chal-
lenges, available at (https://frl.publisso.de/data/frl:6425521/). For each tool, the classifi-
cations were based on local databases built from GRS sequences. For MMseqs2, two
different modules were tested: easy-taxonomy (using the Lowest Common Ancestor ap-
proach) and easy-search (using the local alignment approach). The datasets were down-
loaded and filtered for contigs with a minimum length of 500 bp. Tests were run on
two genera of interest: Acinetobacter (from the marine dataset) and Stenotrophomonas
(from the plant-associated dataset). The performances were evaluated and analyzed at
the species level, using specificity, precision, recall, accuracy, and F1 score as metrics,
defined below:

specificity =
TN

TN + FP
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

accuracy =
TP + TN

TP + TN + FP + FN
(4)

F1 =
2 ∗ precision ∗ recall
precision+ recall

(5)

where TP, TN, FP, and FN are the true positives, true negatives, false positives, and false
negatives, respectively. A classification was considered “positive” if it reached the species
level. If the classification did not reach the species level or the contig remained unclas-
sified, it was considered “negative”. Classification at genus level or unspecified species
(sp.) level were also considered “negative” classifications.



Figure 4. Specificity, precision, recall, accuracy and F1 comparisons between
BLASTn, Kraken2 and MMseqs2 performances on CAMI2 marine and plant-
associated datasets. Custom databases based on GRS of Acinetobacter and
Stenotrophomonas.

Results are shown in Figure 4. The BLASTn method outperformed Kraken2 and
MMseqs2 across all metrics, except recall for the Stenotrophomonas genus. Although
MMseqs2 (with easy-search module) produced competitive results, BLASTn (running at
a slightly slower speed) consumed less “on process” disk space (an advantage for large
datasets searches) and performed better overall. Therefore, we found that BLASTn align-
ments are the most suitable for the pipeline here described.

3.2. Pipeline results for the MetaSUB dataset

The MetaSUB dataset [Danko et al. 2021] is a highly diverse metagenomic dataset con-
sisting of 4,728 samples collected from trains and subway stations across 60 cities world-
wide, with the objective of characterizing and exploring the urban microbiome diversity.
For the purposes of this work we used an assembled version of the dataset (i.e., a set
of contigs). We removed contigs shorter than 500 bp; the resulting set has 79,742,596
contigs, and a total length of 96,865,804,315 bp.

Five target genera were selected among the genera previously identified in the
MetaSUB dataset. The list of target genera is: Xanthomonas, Stutzerimonas, Moraxella,
Acinetobacter and Stenotrophomonas.



For each target genus, its GRS was built, with relevant statistics shown in Table 1.

Table 1. GRS numbers for each target genus.

Genus # RefSeq genomes # genomes in GRS # GRS / # RefSeq
(%)

Xanthomonas 2,734 192 7
Stutzerimonas 411 148 36

Moraxella 394 81 21
Acinetobacter 12,912 945 7.3

Stenotrophomonas 1,520 190 12.5

The pipeline was run and resulted in the “known species” and “putative new
species” sets shown in Table 2.

Table 2. Number of contigs for the sets “known species” and “putative new
species”.

# contigsGenus Known species putative new species
Xanthomonas 76,020 1,081,123
Stutzerimonas 908,548 1,401,992

Moraxella 286,964 391,385
Acinetobacter 1,243,548 659,844

Stenotrophomonas 529,810 916,272

A survey of bacterial species for the target genera was conducted, yielding values
of relative abundance. Table 3 shows the most abundant species for each target genus
explored. Despite the high relative abundance of certain species, there is a significant di-
versity within this taxonomic classification that remains hidden. Our method can uncover
this hidden diversity as exemplified by results for Acinetobacter. In the case of this genus,
the most abundant species is Acinetobacter lwoffii and our pipeline yielded the result that
it has a taxonomic diversity of five strains in the MetaSUB dataset: Acinetobacter lwoffii,
Acinetobacter lwoffii NIPH 715, Acinetobacter lwoffii ATCC 9957, Acinetobacter lwoffii
NIPH 478, and Acinetobacter lwoffii NCTC 5866. However, our results go even further,
as shown in Table 4, revealing a hidden diversity of 26 non-redundant genomes, with any
pair of genomes not having more than 98% pairwise ANI.

Table 3. Most abundant taxa for the target genera and their relative abundance.
in MetaSUB dataset.

Genus Most abundant Taxa Relative abundance (%)
Xanthomonas Xanthomonas campestris 77.8
Stutzerimonas Stutzerimonas stutzeri 65.5

Moraxella Moraxella osloensis 69.3
Acinetobacter Acinetobacter lwoffii 13.0

Stenotrophomonas Stenotrophomonas maltophilia 68.9



Table 4. Genomes diversity found for Acinetobacter lwoffii taxon in MetaSUB
dataset.

Accession Number Taxon Relative Abundance (%)
GCF 000369125.1 Acinetobacter lwoffii ATCC 9957 0,31
GCF 900444925.1 Acinetobacter lwoffii 0,25
GCF 019787625.1 Acinetobacter lwoffii 0,24
GCF 019048525.1 Acinetobacter lwoffii 0,57
GCF 022967985.1 Acinetobacter lwoffii 0,37
GCF 024129555.1 Acinetobacter lwoffii 0,38
GCF 019787645.1 Acinetobacter lwoffii 1,28
GCF 031455115.1 Acinetobacter lwoffii 0,49
GCF 000369145.1 Acinetobacter lwoffii NIPH 478 0,58
GCF 009730095.1 Acinetobacter lwoffii 1,65
GCF 013349205.1 Acinetobacter lwoffii 0,63
GCF 022809915.1 Acinetobacter lwoffii 0,6
GCF 000369105.1 Acinetobacter lwoffii NCTC 5866 0,08
GCF 024129855.1 Acinetobacter lwoffii 0,58
GCF 019343495.1 Acinetobacter lwoffii 0,53
GCF 963518635.1 Acinetobacter lwoffii 0,59
GCF 002321025.1 Acinetobacter lwoffii 0,93
GCF 012393445.1 Acinetobacter lwoffii 0,23
GCF 024129635.1 Acinetobacter lwoffii 0,58
GCF 035788095.1 Acinetobacter lwoffii 0,28
GCF 000368165.1 Acinetobacter lwoffii NIPH 715 0,19
GCF 024129435.1 Acinetobacter lwoffii 0,38
GCF 024129685.1 Acinetobacter lwoffii 0,34
GCF 963516025.1 Acinetobacter lwoffii 0,33
GCF 015602705.1 Acinetobacter lwoffii 0,27
GCF 024129715.1 Acinetobacter lwoffii 0,27

The processing of the “putative new species” set generated sub-bins, with com-
pleteness distributions shown in Figure 5. Acinetobacter was the target genus with best
results, showing several sub-bins with completeness greater than 50% and contamination
under 10%. Three sub-bins are shown in Table 5, along with completeness and contam-
ination values assessed using CheckM2, and their taxonomy assignment performed with
GTDB-tk. These three sub-bins were phylogenetically analyzed, as shown in Figure 6.
The analysis includes 92 genomes from the Acinetobacter genus.



Figure 5. Completeness box plots of sub-bins generated for the genera Xan-
thomonas, Acinetobacter, Stenotrophomonas and Stutzerimonas.

Table 5. Acinetobacter sub-bins SB01-A, SB02-A and SB03-A. Completeness and
contamination analysis executed with CheckM2 and taxonomic classification per-
formed with GTDB-tk.

Sub-bin code Completeness Contamination GTDB-tk classification
SB01-A 53,09 4,59 g Acinetobacter;s
SB03-A 58,37 6,03 g Acinetobacter;s
SB02-A 53,3 7,46 g Acinetobacter;s

The sub-bins were also processed with fastANI against the GRS of Acinetobacter.
The results are that SB01 and SB03 have ANI score above 95% with genomes of Acineto-
bacter variabilis and Acinetobacter lwoffii, respectively. However, for SB02, no genome
reached 95% ANI score, with Acinetobacter lwoffii being the closest one at 94.54%.
These findings suggest that SB02 potentially represents a new species, while SB01 and
SB03 probably are new strains of known species of Acinetobacter.

4. Conclusions

The results presented show that the pipeline here described can uncover hidden genomic
diversity that would otherwise remain hidden if only general-purpose taxonomic classi-
fication tools are used. This hidden diversity can be classified in three categories: 1) the
tool can show the presence in the samples of many separate strains for a given species; 2)
it can show the presence of new strains; and 3) it can find putative new species for a given
genus.

Although common tools for taxonomy classification, such as Kraken2 and MM-
seqs2, can in principle recover some of this same diversity, in order to do so they would
have to use the appropriate GRS, which is itself a contribution of this work.

For future work, we plan to automate certain steps of the pipeline, so that it can be
automatically run from beginning to end; and then run the pipeline on additional datasets,
to obtain more presence and relative abundance results relative to the target genera men-
tioned here.



Figure 6. Phylogenetic tree for Acinetobacter sub-bins SB01A, SB02A and
SB03A. Psychrobacter immobilis genome used as outgroup.
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