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Abstract. COVID-19, caused by the SARS-CoV-2 virus, has led to a global pan-
demic since 2020, resulting in nearly 7 million deaths. The virus’s rapid spread
is due to more transmissible variants, many with spike glycoprotein mutations,
which are key for cell invasion and a vaccine target. Understanding these mu-
tations is crucial for preventing more dangerous variants. This study developed
a computational method to predict the impact of mutations on the spike protein.
Using data from 23,472 mutations, molecular modeling, graph-based structural
signatures, and a machine-learning approach based on neural networks, the
model analyzed 318 proteins, showing the methodology’s effectiveness in as-
sessing the potential of new variants.

1. Introduction
In December 2019, SARS-CoV-2 emerged in Wuhan, China, and rapidly spread glob-
ally [Alsharif and Qurashi 2021], with the World Health Organization (WHO) declaring a
pandemic in 2020. SARS-CoV-2 is a coronavirus that causes the respiratory disease now
called Coronavirus disease 2019 (COVID-19). In May 2023, the Public Health Emer-
gency of International Concern (PHEIC) ended. However, COVID-19 remains a threat,
with over 770 million cases and 7 million deaths as of August 2023 [WHO 2023].

Coronaviruses belong to the Coronaviridae family, in the Betacoronavirus gen-
era. These viruses possess the largest RNA genome, ranging from 27 to 32 kilobases
(kb), with SARS-CoV-2’s genome being about 29.9 kb long. The viral structure in-
cludes a capsid, envelope, and spike protein (S) [Wang et al. 2020], with mutations in
these proteins being essential for understanding viral behavior and developing treatments
[Weiss and Navas-Martin 2005, Yang and Rao 2021, Nieto-Torres et al. 2015]. The
Spike (S) protein, which binds to the ACE2 receptor, facilitates the rapid spread of SARS-
CoV-2, mainly due to the furin cleavage site. For example, mutations such as D614G
and alterations in glycosylation increase transmissibility and immune evasion, making
the S protein central to pathogenicity and transmission studies [Rabaaan et al. 2020,
Cueno and Imai 2021].



Since 2019, SARS-CoV-2 has evolved into more than ten variants with altered
transmissibility and severity. WHO has classified some of them as Variants of Concern
(VOC) (Supplementary Table S1). As of March 2023, only Variants of Interest (VOIs) and
Variants Under Monitoring (VUMs) remain. Mutations in the Receptor-Binding Domain
(RBD) of the S protein have been crucial for immune escape, with key residues identi-
fied as responsible for antibody resistance. [Harvey et al. 2021, Weisblum et al. 2020].
Therefore, scientists have made a great effort to understand the structural relationships
between these molecules.

Bioinformatics can be a helpful tool for analyzing viral genomes and the ef-
fects of mutations, facilitating studies of SARS-CoV-2 [Moreira et al. 2024]. With ad-
vances in sequencing and data management, these techniques have accelerated discoveries
about viral evolution and protein function, helping to combat threats such as COVID-19
[Bayat 2002, Ibrahim et al. 2018, Paiva et al. 2022]. Structural alignment and molecular
modeling are essential bioinformatic approaches to studying SARS-CoV-2 variants. They
can reveal how mutations impact amino acids and protein function [Shukla et al. 2023].
These techniques identify critical regions and predict changes in the S protein, helping to
combat emerging variants [Shukla et al. 2023, Ribeiro et al. 2023].

Another strategy that can be adopted to understand the structural role of
these molecules is structural signatures. Studying structural signatures is essential
for predicting the effects of mutations on function and stability [Hilario et al. 2004,
Pires et al. 2011]. Thus, we hypothesized that this methodology could be ap-
plied to protein S, identifying patterns linked to transmissibility and pathogenicity
[Zatorski et al. 2022]. These signatures provide a more detailed analysis than sequence-
based methods, aiding in understanding viral evolution [Pires et al. 2011]. We wonder
whether structural patterns in sets of mutations (mainly in spike protein) increase the epi-
demiological prevalence of SARS-COV-2. If such patterns exist, could they be detected
using structural signatures? To answer these questions, we modeled a series of spike
protein mutants and calculated their structural signatures.

This study examines the impact of mutations in the SARS-CoV-2 spike protein,
aiming to predict how structural changes influence infection and immune evasion. Un-
derstanding these mutations is essential to developing effective vaccines and treatments
in the face of more transmissible and resistant variants. Using structural bioinformatics
algorithms such as the atomic Cutoff Scanning Matrix (aCSM, [Pires et al. 2013]), we
created structural signatures of the S protein to model and predict the impacts of muta-
tions. We also developed a neural network model that analyzes how these mutations pro-
vide biological advantages to SARS-CoV-2, contributing to improved control measures
and applicable to studying other emerging pathogens. Figure 1 presents an overview of
the methodology adopted in this study.

2. Methodology

2.1. Data Collection

Data for the Spike protein was gathered from UniProt using the P0DTC2 code, which
provided details on the wild-type sequence, mutagenesis, and protein modifications. Mu-
tation frequency data, especially for the RBD region, were sourced from GISAID. Addi-



tionally, unique mutations across the entire S protein were selected from the Bioinformat-
ics Institute of Singapore database (ASTAR Singapore)1.

Figure 1. Overview of the methodology discussed in this work. The workflow il-
lustrates the process where Spike protein sequences and mutation data were collected, followed
by modeling using MODELLER, SWISS-MODEL, and ColabFold. Quality evaluation was
performed to select the best models. Structural signatures were then calculated using four al-
gorithms (CSM, aCSM, aCSM-HP, and aCSM-ALL). These signature vectors were processed
through neural networks, classifying mutations of interest and evaluating their impact.

An in-house Python script was created to process the Wuhan-Hu-1 strain’s se-
quence and the 37 mutations of the prevalent variants from the CoVariants website 2, gen-
erating a ”.txt” file with the mutated sequences. The sequences were manually checked
in the Clustal Omega to confirm the mutations.

1Available at https://mendel.bii.a-star.edu.sg/METHODS/corona/current/MUTATIONS/hCoV-
19 Human 2019 WuhanWIV04/hcov19 Spike mutations table.html.

2Available at https://covariants.org



2.2. Molecular 3D Modeling
For comparison purposes, the models were generated using three tools: MODELLER
and SWISS-MODEL, based on comparative modeling; and ColabFold, based on deep
learning.

The MODELLER v.10.4 procedure started with a BLAST search
[Altschul et al. 1990] to identify proteins resolved in the PDB, selecting models
with ≥ 25% identity [Webb and Sali 2016]. The structures with PDB ID 7CWL, 7KRQ,
7N1Q, 7N1U, 7SBK, 7SBP, 7SBS, 7TNW, and 8D55 were downloaded and modified in
PyMOL v.2.5.4, isolating monomers from homotrimers. Five models were created for
each protein and the best model was selected based on the lowest DOPE value, which is
calculated based on a sample of native protein structures, generating a statistical potential
that varies depending on the atomic distance [Shen and Sali 2006].

Using SWISS-MODEL, the mutated sequences were directly inputted, and the
tool suggested models for construction. The eight best models were selected, consid-
ering the best sequence coverage. The models generated were evaluated based on the
GMQE value (quality assessment that integrates characteristics of the alignment between
the model, the objective and the structure of the model itself), with higher scores being
considered better3.

ColabFold v.1.5.2-patch [Mirdita et al. 2022]4 was used with default parameters
to generate five models per sequence. The best model was selected on the basis of the
lDDT (local Distance Difference Test), which assesses how well local atomic interactions
in the structure of the reference protein are reproduced in the prediction.

2.3. Model Quality Check
The modeled structures were evaluated in PyMOL by visual analysis and align-
ment with standard models to prevent inconsistencies. The Ramachandran plot
[Ramachandran et al. 1963], generated by PROCHECK [Laskowski et al. 1993] on the
SAVES server5, was essential to validate the 3D models (Supplementary Figure S2)
[Bowie et al. 1991, Lüthy et al. 1992]. The results were compared to PDB models and
used as a reference for new models.

Molecular modeling was chosen due to the limited availability of database vari-
ants, thus avoiding the high computational cost of molecular dynamics. The PDB ID
7CWL was utilized as the template for modeling the variants, including single mutations.

We then divided this work into two parts: (i) evaluating the 38 variants and (ii)
evaluating each single-point mutation individually.

The structural models were also evaluated using the VERIFY 3D tool, which
compares the atomic 3D structure with the linear amino acid sequence. The tool clas-
sifies the structure based on its conformation and environment (such as α-helix, β-
sheet, etc.) and compares these data with reference structures, allowing the identifica-
tion of the most appropriate model and the evaluation of its quality [Bowie et al. 1991,
Ramachandran et al. 1963]. Further details are provided in the Supplementary Material.

3Available at https://swissmodel.expasy.org/docs/help
4Available at https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold2.ipynb
5Available at https://saves.mbi.ucla.edu/



2.4. Structural Signatures
We used the SIGNA Python library (https://github.com/LBS-UFMG/signa) to generate
the structural signatures. Four algorithms were used: CSM, aCSM, aCSM-HP, and
aCSM-ALL [Pires et al. 2011, Pires et al. 2013]. A total of 114 structural signatures were
obtained, one for each protein structure modeled using the previously mentioned tools.
The output was a ”.csv” file containing the variant’s name, followed by the numeric vec-
tor representing the structural signature and the cutoff step legend for each column. The
parameters used for signature extraction included a cutoff limit of 10 Å, and a cutoff
step of 0.1 Å [Mariano et al. 2019]. The resulting vector sizes varied depending on the
signature type.

2.5. Prediction Analysis
We then built a model to classify variants using a neural network algorithm. The follow-
ing parameters were used: 100 neurons in hidden layers; ReLU activation; Adam solver;
regularization α = 0.0001; the maximal number of iterations of 200; and the option ”repli-
cate training”. The input file for classification consisted of structural signatures, which
represent the predictive attributes. Specifically, these signatures capture the patterns in the
numerical vectors of the mutations’ structural features, and the neural network algorithm
was used to identify and rank the importance of each segment. The target attribute for
the model was the prior classification of the variants into two categories: Strong variants
(”Yes” in the dataset) and Weak variants (”No” in the dataset), corresponding to more
prevalent Variants of Concern (VOCs) as defined by the World Health Organization - MI
mutations - and variants with less clinical impact - LI mutations (Table 1). We used the
Orange Data Mining software v.3.34.1 [Demšar et al. 2013] for the analysis. The models’
accuracy, F1-Score, precision, and recall metrics (Supplementary Figure S1 and Table S1)
were compared to identify the best-performing one.

Table 1. Classification of Variants. The table lists the More Infectious (MI) and Less
Infectious (LI) variants selected through the CoVariants website. The full mutation list
is available at https://github.com/LBS-UFMG/s-variant-signatures.

Class Variant
More Infectious (MI) 20H (Beta V2), 20I (Alpha V1), 20J (Gamma V3), 21A (Delta),

21I (Delta), 21J (Delta), 21K (Omicron), 21L (Omicron),
22A (Omicron), 22B (Omicron), 22C (Omicron), 22D (Omicron),
22E (Omicron), 22F (Omicron), 23A (Omicron), 23B (Omicron),
23C (Omicron), 23D (Omicron), 23E (Omicron), 23F (Omicron)

Less Infectious (LI) 20A.EU2, 20A 98F, 20A 126A, 20A 439K, 20B 626S, 20B 732A,
20B 1122L, 20C 80Y, 20E (EU1), 21B (Kappa), 21C (Epsilon),
21D (Eta), 21F (Iota), 21G (Lambda), 21H (Mu), 677H.Robin1,
677P.Pelican, Wild Variant

.

3. Results and Discussions
3.1. Spike Protein Data
The S protein obtained from UniProt consists of 1,273 amino acids and has a molecular
weight of 141,178 Da. The RBD region spans amino acids 319 to 541 [Consortium 2023].



Through GISAID, a global data-sharing initiative, mutation frequency data for this protein
was obtained. Since January 2020, over 5 million SARS-CoV-2 genetic sequences from
194 countries have been publicly available via GISAID’s EpiCoV database. This data
is crucial for developing diagnostic and preventive measures and monitoring emerging
variants and mutations [Chen et al. 2021].

The most prevalent SARS-CoV-2 variants were identified via CoVariants, an
open-source project using Nextstrain clade nomenclature. It provides an overview of
variants, their defining mutations, impacts, and geographic spread [Goujon et al. 2010,
Sievers et al. 2011]. The selected dataset includes Binding Free Energy (BFE) variations
for the S protein-ACE2 complex, where negative values mean weak binding and positive
values mean strong binding, making the variant more infectious [Chen et al. 2021]. Thus,
MI and LI were selected based on this.

Figure 2 shows the structure of the SARS-CoV-2 S protein (PDB ID: 7CWL),
highlighting examples of MI and LI mutations. MI mutations include position N501,
shown in green at the top, while the mutation N501Y is shown in magenta. This mutation
significantly affects the protein’s interaction with the ACE2 receptor, thereby influencing
viral transmissibility. LI mutations include position F43, shown in green at the bottom,
and the mutation F43M in magenta. This mutation has a minor effect on the overall
stability and function of the Spike protein compared to MI mutations. The entire protein
structure illustrates how these changes alter specific residues in the Spike protein.

Figure 2. Spike structure and examples of more infectious (MI) and less infec-
tious (LI) mutations. The MI N501Y mutation is shown at the top, and the LI mutation
F43M is shown at the bottom.



3.2. Part 1: Evaluation of the 38 Variants
The 38 variant models were generated through molecular modeling (Table 1). Although
the tools used are not designed to predict the impact of mutations directly, they were em-
ployed as the most computationally viable option. Alternatives like molecular dynamics
simulations would be significantly more computationally expensive for large-scale analy-
ses.

The generated structural models were evaluated using the VERIFY 3D tool. It
verified the congruence between the three-dimensional (3D) atomic model and its cor-
responding one-dimensional (1D) amino acid sequence. The structure was categorized
based on its arrangement and environment, such as α−helix, β− sheet, loop, polar, and
nonpolar, and the results were compared with reference structures to select the best model
and evaluate its quality [Bowie et al. 1991][Lüthy et al. 1992]. We generated Ramachan-
dran plots for the PDB wild structure and our models. Preliminary results indicate that
our models are as good as native structures. For example, the Ramachandran plot analysis
of 7CLW indicated that 84.7% of residues in this model were in allowed regions, while
VERIFY 3D confirmed 62.48% of residues had a 3D-1D score above 0.1 (Supplementary
Figure S2).

After modeling the mutants and calculating the signatures, we build a neural net-
work model using Orange Data Mining software (Table 2). This was necessary for com-
paring the performance of the models and evaluating metrics such as Accuracy, F1-Score,
Precision, and Recall. As mentioned, variants were classified into MI (VOCs, as defined
by the WHO) and LI. The values of the structural signatures were used to determine
the class of a modified SARS-CoV-2 variant based on this binary classification. Table 2
presents the best values for each metric across the different modeling tools.

SWISS-MODEL coupled with aCSM-HP performed consistently well in almost
all comparisons, with an accuracy of 92%. This is an indication that there are structural
patterns that explain more infectious and less infectious variants, which corroborates our
initial hypothesis. The aCSM-HP is a signature that considers atomic positions and clas-
sifies atoms into two types: polar and hydrophobic. This signature is considered simpler
than the more complete version, aCSM-ALL, which considers eight atomic types: accep-
tor, donor, hydrophobic, positive, negative, sulfide, aromatic, and neutral. This interesting
result indicates that only the polarity of atoms is sufficient to classify the structures.

3.3. Part 2: Obtaining Models with Single Mutations
After building a model to classify variants based on their signature, we want to know
whether single-point mutations are sufficient to classify our structures. Thus, we analyzed
23,472 unique mutations across the S protein from the literature. From this, 102 mutations
found in the most prevalent SARS-CoV-2 variants were selected (More Infectious - MI
mutations). To balance the sampling, another 102 mutations were randomly chosen from
the remaining 23,370 mutations (Less Infectious - LI mutations) (Table 3).

The 204 selected single-point mutations were modeled only using the MOD-
ELLER tool due to its efficient automation capability for handling multiple structures.
Five models were generated for each of the 204 mutations, and the model with the lowest
DOPE score was selected. The structural signatures of the best models were obtained
and subsequently analyzed alongside the variant signatures using a neural network model



Table 2. Model metrics were obtained through analysis of each tool’s signatures.
Grey lines indicate the signature method used (CSM, aCSM, aCSM-HP and aCSM-
ALL, respectively), and Class columns indicate the three modeling tools used (SWISS-
MODEL, MODELLER, and ColabFold, respectively).

CSM
Class Accuracy F1-Score Precision Revocation
SWISS-MODEL 0.868 0.869 0.870 0.868
MODELLER 0.895 0.895 0.895 0.895
ColabFold 0.763 0.763 0.772 0.763

aCSM
Class Accuracy F1-Score Precision Revocation
SWISS-MODEL 0.868 0.869 0.870 0.868
MODELLER 0.842 0.839 0.857 0.842
ColabFold 0.474 0.471 0.470 0.474

aCSM-HP
Class Accuracy F1-Score Precision Revocation
SWISS-MODEL 0.921 0.921 0.922 0.921
MODELLER 0.868 0.869 0.870 0.868
ColabFold 0.658 0.654 0.659 0.658

aCSM-ALL
Class Accuracy F1-Score Precision Revocation
SWISS-MODEL 0.895 0.895 0.895 0.895
MODELLER 0.868 0.869 0.870 0.868
ColabFold 0.895 0.895 0.900 0.895

built with the Orange Data Mining software. The objective here is to verify the impact of
each mutation on the created model.

As shown in Table 4, due to the more detailed data patterns — involving individual
mutations in a structure with 1,273 amino acid residues — the aCSM-ALL structural sig-
nature showed superior results compared to the other signatures. This can be attributed to
the ability of this signature to provide more detailed structural information, differentiating
between various classes of atoms.



Table 3. More Infectious (MI) and Less Infectious mutations (LI). Single mutations
selected and characterized as Most Infectious (MI) in the first column and Least Infec-
tious (LI) in the second column according to prevalence.

MI mutations LI mutations
L18F, T19R, T19I, T20N, L24del, P25del, F43M, T51S, G75N, V83C, P85Q, W104C,

P26del, P26S, A27S, Q52H, A67V, T109D, D111A, L118K, R158S, Y170R,
H69del, V70del, D80A, V83A, T95I, M177C, V193Q, F194H, H207R, Q218H,
D138Y, G142D, G142del, V143del, R246Y, T259Y, Q271T, T274N, T274A,
Y144del, Y145D, H146Q, K147E, K278S, K278Q, E281K, D287Y, T315del,
W152R, E156del, F157L, F157del, T315N, S316V, S316del, C391G, D398H,

R158G, E180V, Q183E, R190S, I210V, P412P, N349L, R457I, R466del, D467S,
N211del, L212I, V213G, V213E, D215G, P479D, C480S, N481T, V483D, T500Y,

A222V, L241del, L242del, A243del, G504P, L533F, V534G, N540T, F543F,
G252V, D253G, G257S, G339H, G339D, N544I, N544Q, V551S, V551A, N556L,

R346T, L368I, S371F, S371L, S373P, Q607V, L650T, V705G, A706Q, D737C,
S375F, T376A, D405N, R408S, K417N, M740Y, G769D, D775V, D775N, D775K,
K417T, N440K, K444T, V445P, G446S, Q784G, Q836V, A846V, D848M, P863del,
L452R, L452Q, F456L, N460K, S477N, A871S, L878V, I882Y, A893Y, M900N,
T478K, T478R, E484A, E484K, F486V, L922L, A930G, A944I, V959L, L959M,
F486S, F486P, F490S, Q493R, G496S, F970L, S975I, I980Y, L984Q, Y1007L,

Q498R, N501Y, Y505H, P521S, T547K, I1018I, M1029H, E1031Q, V1033K,
A570D, D614G, H655Y, N679K, P681H, S1037L, A1056P, Y1067E, Y1067I, V1104Q,
P681R, A701V, S704L, T761N, N764K, Q1113Y, I1179E, I1183S, K1191T, K1205I,

D796Y, N856K, D950N, Q954H, N969K, Q1208M, G1219L, L1224I, I1227Y,
L981F, S982A, T1027I, D1118H, V1176F M1229W, C1235P, C1243M

Table 4. Metrics obtained for prediction with different types of structural sig-
natures. The white cells indicate the signature method (CSM, aCSM, aCSM-HP and
aCSM-ALL, respectively) used in the models resulting from the MODELLER tool, where
the classes addressed in the prediction method were More Infectious (MI) and Less In-
fectious (LI) and the gray colored line indicates the metrics analyzed.

Class Accuracy F1-Score Precision Recall

CSM MI 0.579 0.680 0.567 0.850
LI 0.579 0.385 0.625 0.278

MODELLER 0.579 0.540 0.594 0.579

aCSM MI 0.368 0.520 0.433 0.650
LI 0.368 0.077 0.125 0.056

MODELLER 0.368 0.310 0.287 0.368

aCSM-HP MI 0.632 0.741 0.588 1.000
LI 0.632 0.364 1.000 0.222

MODELLER 0.632 0.562 0.783 0.632

aCSM-ALL MI 0.816 0.829 0.810 0.850
LI 0.816 0.800 0.824 0.778

MODELLER 0.816 0.815 0.816 0.816

Based on these results, it is possible to randomly combine mutations in a potential
SARS-CoV-2 variant and predict whether, with certain combined mutations, this potential
variant tends to be more or less prevalent, according to the data from variants that, in the



real-world context, proved to be of greater importance to global public health.

4. Conclusion
This study explored the ability of the SARS-CoV-2 S protein to undergo mutations that
may enhance its pathogenicity. Understanding these factors is crucial, given the severe
impact of COVID-19. The main goal was to develop a met0.562hod to predict the impact
of mutations in the S protein, identifying those that increase infectivity, transmissibility,
and pathogenic, similar to the most prevalent variants. Molecular models were generated,
filtered for quality, and analyzed using aCSM structural signatures processed by neural
networks. The results sMIhowed high sensitivity and specificity in classifying variants,
with good accuracy in distinguishing more pathogenic from less prevalent ones. Our
results indicate that aCSM-HP and models built with SWISS-MODEL were better for
this case study. When trained with single-point mutation signatures, the model accurately
predicted the impact of new mutations, offering a method to forecast the formation of
more pathogenic variants. In this case, the best signature was aCSM-ALL. This indicates
that this signature with the parameters max cutoff 10 and cutoff step of 0.1 are good
strategies to represent SARS-COV-2 spike protein. This can be used for example to assess
the impact of new variants.
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Lüthy, R., Bowie, J. U., and Eisenberg, D. (1992). assessment of protein models with
three-dimensional profiles. nature, 356(6364):83–85.

Mariano, D. C. B., Santos, L. H., Machado, K. D. S., Werhli, A. V., de Lima, L. H. F.,
and de Melo-Minardi, R. C. (2019). A computational method to propose mutations in
enzymes based on structural signature variation (SSV). Int. J. Mol. Sci., 20(2):333.

Mirdita, M. et al. (2022). colabfold: making protein folding accessible to all. nature
methods, 19(6):679–682.

Moreira, E. U. M., Mariano, D. C. B., and de Melo-Minardi, R. C. (2024). computational
analysis of mutations in sars-cov-2 variants spike protein and protein interactions. In
features, transmission, detection, and case studies in covid-19, pages 123–139. else-
vier.

Nieto-Torres, J. L. et al. (2015). Severe acute respiratory syndrome coronavirus e protein
transports calcium ions and activates the nlrp3 inflammasome. Virology, 485:330–339.

Paiva, V. d. A. et al. (2022). Protein structural bioinformatics: An overview. Computers
in Biology and Medicine, 147:105695.

Pires, D. E. V. et al. (2011). Cutoff scanning matrix (csm): structural classification
and function prediction by protein inter-residue distance patterns. BMC Genomics,
12(Suppl 4):S12.

Pires, D. E. V. et al. (2013). acsm: noise-free graph-based signatures to large-scale
receptor-based ligand prediction. bioinformatics, 29(7):855–861.

Rabaaan, A. A. et al. (2020). Sars-cov-2, sars-cov, and mers-cov: A comparative
overview. Le Infezioni in Medicina, 28(2):174–184.

Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963). stereochemistry
of polypeptide chain configurations. j. mol. biol., 7(1):95–99.

Ribeiro, R. et al. (2023). Molecular modeling study of natural products as potential bioac-
tive compounds against sars-cov-2. Journal of Molecular Modeling, 29(6):183.



Shen, M.-y. and Sali, A. (2006). Statistical potential for assessment and prediction of
protein structures. Protein Science, 15(11):2507–2524.

Shukla, N. et al. (2023). Covid variants, villain and victory: A bioinformatics perspective.
Microorganisms, 11(8):2039.

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R.,
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