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Abstract. The regulation of cellular processes is governed by chains of chemi-
cal reactions, known as cell signaling pathways. A key challenge in modeling
these pathways is the “lack of isolation problem”, where reactions within the
model fail to interact with those in the broader cellular context, reducing pre-
diction accuracy in first-principle models. Moreover, often some first-principle
parameters are missing and must be inferred from data. To address this, we
propose a hybrid modeling approach combining ordinary differential equa-
tion (ODE)-based first-principle models with neural network-based data-driven
models, which jointly infers both neural network weights and missing first-
principle parameters. Computational experiments using an iron metabolism
model and a model implementation based on universal differential equations
(UDEs) demonstrated significant improvements in prediction accuracy com-
pared to first-principle models. These results support UDE-based hybrid models
as effective tools for studying the complex dynamics of biological systems.

1. Introduction
Cell signaling pathways are essential to understanding the complex processes that reg-
ulate cellular behavior. These pathways consist of chemical species, primarily pro-
teins, that interact through chains of reactions. Information is transmitted via con-
centration changes of these species over time, often involving protein-protein interac-
tions or post-translational modifications such as phosphorylation. Modeling these path-
ways is a significant challenge in systems biology due to their intricate interactions and
regulatory mechanisms, and also the lack of measurements of many kinetic constants
of the reactions in the pathway. Ordinary differential equations (ODEs) have tradi-
tionally been used to model cell signaling pathways by describing the rates of reac-
tions [Reis et al. 2017]. Kinetic constants are either sourced from literature or repositories
like SABIO-RK [Wittig et al. 2011], while unknown constants are inferred from time-
series data through optimization methods. However, a persistent issue with ODE models



is the ”lack of isolation” problem, where the exclusion of reactions involving unmodeled
species results in models that fail to capture the complete system dynamics, reducing
predictive accuracy [Sousa et al. 2023]. Expanding the model or introducing hypotheti-
cal species are common but flawed approaches, often leading to overfitting or unrealistic
models. In recent years, data-driven approaches, especially machine learning, have of-
fered alternatives for modeling biological systems. While these methods excel at handling
complex datasets, they lack interpretability, which is crucial for understanding underly-
ing biological mechanisms. To address this, hybrid models combining mechanistic ODEs
with neural networks have gained attention, offering both interpretability and predictive
power. Notably, Universal Differential Equations (UDEs) [Rackauckas et al. 2021] pro-
vide a framework to integrate these models, enabling more accurate representations of bi-
ological systems. Despite their promise, UDE applications to cell signaling pathways still
face the challenge of inferring both neural network weights and unknown first-principle
parameters, such as rate constants, simultaneously—an issue that remains unresolved in
the current literature. This work aims to address this gap by proposing a UDE-based ap-
proach for modeling cell signaling pathways that jointly infers unknown parameters and
neural network weights from data.

The remainder of this paper is organized as follows: in Section 2, we present and
discuss some papers from the literature that are relevant to this work; in Section 3, we
describe the proposed methodology, including the UDE-based hybrid model, the train-
ing process, data acquisition, model assessment, experimental setup and case study; in
Section 4, we show the results obtained in the experiments and discuss them; finally, in
Section 5, we make final remarks about this work and point out possible future paths for
this research line.

2. Related Works

Hybrid models have become an essential tool in chemical kinetics and cell signaling path-
way studies, as they combine the interpretability of traditional first-principle models with
the adaptability of data-driven approaches. These models address the limitations of ordi-
nary differential equations (ODEs), which often struggle to capture the full complexity of
biological systems due to omitted interactions or species. In response, hybrid models in-
tegrate machine learning components, such as neural networks, into first-principle models
to enhance prediction accuracy and system representation.

For instance, Zander and colleagues introduced a hybrid model combining neu-
ral networks with real-world data to predict dynamic behavior in biochemical sys-
tems [Zander et al. 1999]. Wouver and colleagues further explored hybrid model-
ing with radial basis function (RBF) networks to handle real datasets in kinetic sys-
tems [V. Wouwer et al. 2004]. These studies demonstrated the potential of integrating
data-driven methods with traditional modeling approaches, though challenges remain re-
garding the generalization of these models across diverse scenarios.

Narayanan and colleagues extended the application of hybrid models by introduc-
ing functional transformations in simulations, addressing the limitations of real-time data
availability [Narayanan et al. 2022]. Li and colleagues applied long short-term memory
(LSTM) networks in real-world datasets, offering a neural network solution for sequen-
tial data prediction in biological systems [Li et al. 2022]. Similarly, Dong and colleagues



utilized LSTM-based hybrid models to improve predictions of cell signaling pathway dy-
namics, showing that machine learning approaches can augment ODE-based models in
complex systems [Dong et al. 2023].

The introduction of universal differential equations (UDEs) has significantly ad-
vanced hybrid modeling [Rackauckas et al. 2021]. Bangi and colleagues were among
the first to apply UDEs in conjunction with neural networks to model beta-carotene pro-
duction in yeast; this approach demonstrated that UDEs could effectively integrate neu-
ral networks into ODE models, yielding superior results compared to traditional meth-
ods [Bangi et al. 2022]. Santana and colleagues further demonstrated the utility of UDEs
by applying them to sorption kinetics, showcasing their ability to handle complex biolog-
ical systems with enhanced accuracy [Santana et al. 2023].

Lima and colleagues employed UDEs in both real and simulated datasets,
highlighting their ability to balance interpretability and flexibility in hybrid model-
ing [Lima et al. 2023]. Despite these advances, a major research gap persists: the simul-
taneous estimation of unknown first-principle parameters, such as reaction rate constants,
and neural network weights. Current methods often assume that these parameters are
fully known, which is impractical in many real-world scenarios.

In summary, while UDE-based hybrid models hold great promise in addressing
the challenges of traditional ODE approaches, the simultaneous estimation of mechanistic
parameters and neural network components remains an open problem. This gap presents
an opportunity for further research to develop robust methodologies that can fully leverage
the power of hybrid models in biological and chemical systems.

3. Methodology

3.1. The inference of hybrid model

Our proposed methodology leverages the strengths of first-principle models and neural
networks through the universal differential equation (UDE) framework to create a hybrid
model [Rackauckas et al. 2021]. This model integrates the structured, mechanistic under-
standing of biological processes with the flexibility of machine learning, allowing us to
better capture complex dynamics. The hybrid model is represented as:

ẋ = f(x(t),u(t), U(x(t),u(t),ω);θ), (1)

where U denotes the neural network, ω is a vector with the neural network weights, and θ
represents the parameters of the first-principle model. Training this hybrid model involves
calculating the gradients of the solution with respect to ω, using the ADAM optimizer
for rapid convergence and BFGS for fine-tuning the solution. ADAM is effective for
quickly reaching a good approximation due to its adaptive learning rate, making it ideal
for the early stages of optimization when large adjustments are beneficial. Once close
to a minimum, BFGS is used to refine the solution, leveraging curvature information
to take smaller, more accurate steps, thereby enhancing the precision and stability of
convergence.

We incorporate time series data from various initial conditions into the training
process, optimizing a loss function designed to handle multiple time series simultane-
ously. To infer the parameters of the first-principle model and the neural network weights



concurrently, we treat the first-principle parameters as additional optimization variables.
By concatenating these parameters with the vector of the neural network weights, the
optimization algorithm can update all parameters simultaneously.

To prevent the neural network from dominating the hybrid model, which could
result in zeroing out first-principle parameters, we apply regularization to the neural net-
work weights and penalize negative values for first-principle parameters using a rectified
linear unit (ReLU). This ensures biologically plausible estimates and helps maintain the
balance between both components of the hybrid model.

3.2. Training process

The dataset, which consists of time series of concentration levels of the species in the first-
principle model, is split equally into training, validation, and testing sets. Early stopping,
based on the validation set’s mean absolute error (MAE), halts training if no improvement
occurs after 100 iterations, preventing overfitting. To further reduce overfitting, we apply
L2 regularization to the loss function, defined as:

C(w) =
1
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Here, x̂(n)
ij and x
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initial condition, the ith species and jth time point, and w is the parameter vector of the
neural network, with weights w0, . . . , wW . λ is a regularization constant, which in our
experiments is set to 10−3.

We begin optimization with ADAM using a 0.1 learning rate for 2, 000 iterations,
then switch to BFGS for 1, 000 iterations with a backtracking line search to avoid insta-
bility. Neural network weights are initialized near zero for stability.

In joint inference, a penalty of 100, 000 is applied to prevent negative first-
principle parameter values, ensuring biological plausibility.

3.3. Data acquisition

The data for this study was generated through in silico simulations of a complete cell
signaling pathway, denoted as E , retrieved from Odebase [Lüders et al. 2022], and sup-
plemented with a toy model. Random initial values were assigned, and the resulting initial
value problems (IVPs) were solved over the time interval [0, 100], sampled at 101 equally
spaced points. Therefore, we obtained different time series, simulating real-world ex-
periments where a cell line is stimulated with different compounds (i.e.,, different initial
conditions).

To create a subset F , we selected species common to both E and F , forming the
dataset for parameter inference. Noise was added to the data using a Gaussian distribution
with standard deviation:

σ = 0.05xi, (3)

where xi is the mean of state variable xi. This approach ensured that model training,
validation, and testing reflected realistic biological variability.



3.4. Model assessment

To evaluate the effectiveness of the hybrid model in capturing cell signaling dynamics,
particularly under uncertainty, we used the symmetric mean absolute percentage error
(SMAPE) metric. SMAPE provides a normalized measure of prediction accuracy, making
it well-suited for comparing model performance across different scales. It is defined as:

SMAPE =
100
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This metric allows for a percentage-based evaluation, ensuring a consistent comparison of
the model’s predictive accuracy across varying magnitudes of target variables, providing
a robust assessment of the model’s performance under diverse experimental conditions.

3.5. Description of the experiments

The experimental design consists of two phases to evaluate the resilience and accuracy
of the hybrid model, particularly under the lack of isolation problem and unknown first-
principle parameters.

First phase: This phase focuses on inferring neural network weights, assuming the
first-principle parameters are known. We initially assess the ability of the model to com-
pensate for missing inputs using 30 time series, divided equally for training, validation,
and testing.

Second phase: In this phase, we jointly infer both first-principle parameters and neural
network weights. Starting with one missing parameter at a time, we iteratively remove
more parameters to test the adaptability and performance of the model, as measured by
Symmetric Mean Absolute Percentage Error (SMAPE). Due to computational limits, this
phase uses 30 time series, ensuring efficiency while rigorously testing parameter infer-
ence.

3.6. Case study: iron metabolism pathway

As a case study, we collected a model from the literature called “FeMetabolism FeD-
eficient” [Lopes et al. 2010]. This model describes the dynamics of iron metabolism
through 17 chemical species and 33 first-principle parameters, covering 29 irreversible
reactions [Lopes et al. 2010]. The model is based on studies of C57BL6 wild-type mice
under different dietary conditions: iron-deficient, iron-adequate, and iron-loaded di-
ets [Lopes et al. 2010]. The pathway cutout, highlighted in red in Figure 1, includes 4
chemical species and 4 first-principle parameters, supporting 3 reactions. The chemical
species of the cutout are represented as follows: x1 for iron in plasma, x2 for iron in bone
marrow, x3 for iron in spleen and x4 for iron in heart.

The first-principle model built with the species of the cutout pathway are described



Figure 1. SBGN diagram of the iron metabolism cell signaling pathway. Nodes
symbolize chemical species (such as proteins) and edges denote reactions. The
pathway cutout is highlighted by red nodes and red edges, emphasizing the spe-
cific segments and interactions under study.

by the following equations:

d[x1]

dt
= −[x1]k3 − [x1]k17 + [x4]k18 (5a)

[dx2]

dt
= [x1]k3 (5b)

d[x3]

dt
= −[x3]k6 (5c)

d[x4]

dt
= [x1]k17. (5d)

The corresponding first-principle parameters are listed in Table 1.

k3 k6
13.22 14.61
k17 k18
0.11 0.06

Table 1. First-principle parameters of the iron metabolism pathway cutout.

4. Results
This section presents the results of our investigation into two cell signaling pathways
using the methodology from Section 3. We compared the performance of traditional



first-principle models against hybrid models, including: a linear regression baseline, an
ODE-based model, a UDE-based model with linear regression, and a UDE-based model
with neural networks. The neural network consists of 4 layers, with 4 input neurons and 4
output neurons. The hidden layer contains 5 neurons, using the ReLU activation function,
while the output layer applies a linear activation function.

The first-principle model under noisy conditions showed mean SMAPE values
of 81.84, 80.97, and 79.63 for the training, validation, and test sets, respectively. In
contrast, the linear regression model performed significantly better, with SMAPE scores
of, respectively, 6.14, 7.43, and 7.09.

The UDE-based models, though not outperforming linear regression, exhibited
strong noise resilience. The UDE with linear regression had SMAPE values of 6.91, 8.06,
and 8.02, in training, validation and test sets, respectively, while the UDE with neural
networks scored, respectively, 8.03, 9.46, and 8.35. These results are shown in Figure 2.

Figure 2. Model performance for the iron metabolism model across noisy
datasets, showing SMAPE values for training, validation, and test sets (10 ob-
servations each). The y-axis shows mean SMAPE, and the x-axis categorizes the
models. Error bars indicate standard deviation.

Further analysis evaluated the predictive performance of the UDE model with
linear regression under noisy conditions. The best prediction achieved a SMAPE of 4.43
(see the Figure 3), while the worst reached 19.50. As shown in Figure 4, even in the worst
case, the model maintained a reasonable approximation of the true dynamics across all
chemical species, demonstrating its robustness.



Figure 3. Best predictions (dashed lines) of the UDE with linear regression com-
pared to true dynamics (solid lines) for the iron metabolism model under noisy
conditions.

Figure 4. Worst predictions (dashed lines) of the UDE with linear regression com-
pared to true dynamics (solid lines) for the iron metabolism model under noisy
conditions.



Figure 5 illustrates the effect of removing and estimating different sets of first-
principle parameters along with model weights under noisy conditions. The parameter
sets are indexed as follows: index 1 represents the first-principle model without any re-
moval; index 2 corresponds to the UDE-based model without removal; index 3 involves
the removal of parameter k6; index 4 represents the removal of k3; index 5 involves the
removal of k18; and index 6 represents the removal of k17. Continuing with combinations
of parameter removals, index 7 corresponds to the removal of k18 and k6; index 8 involves
the removal of k17 and k6; index 9 includes the removal of k3 and k6; and index 10 repre-
sents the removal of k17 and k3. The analysis proceeds with index 11, which includes the
removal of k17, k18, and k6; index 12 involves the removal of k17, k18, and k3; index 13
corresponds to the removal of k18, k3, and k6; index 14 involves the removal of k17, k3,
and k6; and finally, index 15 represents the removal of k17, k18, k3, and k6.

Although the removal of the subset of parameters k17, k18, k3 (index 12) led to
poorer results, the overall mean SMAPE was still significantly improved compared to the
first-principle model. Other parameter sets exhibited stability, even when compared to
scenarios where all first-principle parameters were assumed to be known.

5. Conclusion

This study presents a robust approach to integrating hybrid modeling techniques for cell
signaling pathways when key first-principle parameters are unknown. Our findings high-
light the clear advantages of hybrid models, particularly in their ability to capture complex
dynamics and deliver higher predictive accuracy than traditional first-principle models
(ODE-based models). The integration of data-driven methods, such as neural networks,
with mechanistic models offers greater flexibility in modeling biological systems, espe-
cially in scenarios involving noise and incomplete information.

Despite the superior performance of the hybrid model, particularly in noisy con-
ditions, several challenges emerged during the process of jointly inferring first-principle
parameters and neural network weights. Numerical instability and suboptimal parameter
estimates occurred in some cases, even when SMAPE values indicated reasonable predic-
tive accuracy. These issues underline the need for further refinement in both the optimiza-
tion algorithms and the regularization techniques used to maintain the balance between
mechanistic accuracy and neural network flexibility. The removal of certain critical pa-
rameters simultaneously, such as {k17, k18, k3}, led to a noticeable drop in performance,
indicating potential dependencies on specific parameters that should be investigated in
future studies.

In conclusion, while the hybrid approach shows great promise for advancing the
study of cell signaling pathways, particularly in situations where traditional models are
limited, there is room for improvement. Future work should focus on addressing the
challenges of numerical instability, refining the methods for joint parameter inference, and
exploring the model’s performance across a broader range of pathways and conditions.
This will be essential for ensuring that hybrid models become a reliable and scalable tool
for studying complex biological systems.



Figure 5. Impact of first-principle parameter removal on mean SMAPE for the iron
metabolism model under noisy conditions. The mean SMAPE is shown for dif-
ferent sets of removed parameters using 10 noisy observations each for training,
validation, and test sets. The y-axis represents mean SMAPE, and the x-axis lists
the removed parameters. Error bars indicate standard deviation.
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