Skip to main content

Anti-CD3 Stimulated T Cell Transcriptome Reveals Novel ncRNAs and Correlates with a Suppressive Profile

  • Conference paper
  • First Online:
  • 476 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12558))

Abstract

T lymphocytes are key players in immunity. Anti-CD3 antibodies activate T cells and promote a suppressive phenotype in vivo. Although the pharmacological use of these antibodies is widely studied, the underlying mechanisms are still poorly understood. Here we describe the response of the non-coding RNA transcriptome of T cells after in vitro stimulation of peripheral blood mononuclear cells (PBMC) by anti-CD3 and demonstrate that several novel long non-coding RNA are associated with antibody treatment. Regulated long intergenic non-coding RNAs were associated with lymphocyte activation and signaling pathways. In particular the lncRNA transcripts WFDC21P and GAPLINC are regulated in stimulated T cell.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    bioinformatics.psb.ugent.be/webtools/Venn.

  2. 2.

    ENST00000581442.1.

References

  1. Andrews, S., et al.: FastQC: a quality control tool for high throughput sequence data (2010). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  2. Arrial, R.T., Togawa, R.C., Brigido, M.M.: Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinform. 10(1), 239 (2009). https://doi.org/10.1186/1471-2105-10-239

    Article  CAS  Google Scholar 

  3. BBTools: BBDuk. http://jgi.doe.gov/data-and-tools/bb-tools/

  4. Cabili, M.N., et al.: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25(18), 1915–1927 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. GTEx Consortium et al.: Genetic effects on gene expression across human tissues. Nature 550(7675), 204–213 (2017)

    Google Scholar 

  6. Dijkstra, J.M., Ballingall, K.T.: Non-human lnc-DC orthologs encode Wdnm1-like protein. F1000Research 3, 160 (2014)

    Google Scholar 

  7. Gatter, T., Stadler, P.F.: Ryūtō: network-flow based transcriptome reconstruction. BMC Bioinform. 20(1), 190 (2019). https://doi.org/10.1186/s12859-019-2786-5

    Article  Google Scholar 

  8. Hojo, M.A., et al.: Identification of a genomic enhancer that enforces proper apoptosis induction in thymic negative selection. Nat. Commun. 10(1), 1–15 (2019)

    Article  CAS  Google Scholar 

  9. Hu, Y., et al.: Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 74(23), 6890–6902 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Huang, S., et al.: NEAT1 regulates Th2 cell development by targeting STAT6 for degradation. Cell Cycle 18(3), 312–319 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hudson, W.H., et al.: Expression of novel long noncoding RNAs defines virus-specific effector and memory CD8+ T cells. Nat. Commun. 10(1), 1–11 (2019)

    Article  CAS  Google Scholar 

  12. Hunt, S.E., et al.: Ensembl variation resources. Database 2018 (2018)

    Google Scholar 

  13. Kim, D., Langmead, B., Salzberg, S.L.: HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12(4), 357–360 (2015). https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014). https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin, M.: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17(1), 10–12 (2011)

    Article  Google Scholar 

  16. Niknafs, Y.S., et al.: Taco produces robust multisample transcriptome assemblies from RNA-seq. Nat. Methods 14(1), 68–70 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Norman, D.J., et al.: The use of OKT3 in cadaveric renal transplantation for rejection that is unresponsive to conventional anti-rejection therapy. Am. J. Kidney Dis. 11(2), 90–93 (1988). https://doi.org/10.1016/S0272-6386(88)80186-0

    Article  CAS  PubMed  Google Scholar 

  18. Patro, R., et al.: Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14(4), 417–419 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quinlan, A.R.: BEDTools: the Swiss-army tool for genome feature analysis. Curr. Protocols Bioinform. 47(1), 11–12 (2014)

    Article  Google Scholar 

  20. Ranzani, V., et al.: The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat. Immunol. 16(3), 318 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichert, J.M.: Marketed therapeutic antibodies compendium. MAbs 4(3), 413–415 (2012). https://doi.org/10.4161/mabs.19931

    Article  PubMed  PubMed Central  Google Scholar 

  22. Robinson, J.T., et al.: Integrative genomics viewer. Nat. Biotechnol. 29(1), 24–26 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shui, X., et al.: Knockdown of lncRNA NEAT1 inhibits Th17/CD4+ T cell differentiation through reducing the STAT3 protein level. J. Cell. Physiol. 234(12), 22477–22484 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. Silva, H.M., et al.: Novel humanized anti-CD3 antibodies induce a predominantly immunoregulatory profile in human peripheral blood mononuclear cells. Immunol. Lett. 125(2), 129–136 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. Sousa, I.G., et al.: Gene expression profile of human T cells following a single stimulation of peripheral blood mononuclear cells with anti-CD3 antibodies. BMC Genomics 20(1), 593 (2019). https://doi.org/10.1186/s12864-019-5967-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tooley, J.E., et al.: Changes in T-cell subsets identify responders to FcR-nonbinding anti-CD3 mAb (teplizumab) in patients with type 1 diabetes. Eur. J. Immunol. 46(1), 230–241 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. Wang, P., et al.: The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344(6181), 310–313 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to CAPES and CNPq for scholarship funding and to FAPDF for financial support of this project. We are also grateful to Prof. Concepta M. McManus for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Brigido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

do Almo, M.M. et al. (2020). Anti-CD3 Stimulated T Cell Transcriptome Reveals Novel ncRNAs and Correlates with a Suppressive Profile. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics