Skip to main content

A Simplified Complex Network-Based Approach to mRNA and ncRNA Transcript Classification

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2020)

Abstract

Bioinformatics is an interdisciplinary area that presents several important computational challenges. These challenges are usually related to the large volume of biological data generated and that needs to be analyzed for information discovery. An important challenge is the need to distinguish mRNAs and ncRNAs in an efficient and assertive way. The correct identification of these transcripts is due to the existence of thousands of non-coding transcripts, whose function and meaning are not known, as well as the challenge to understand the expression and regulation of genetic information. On the other hand, the complex network theory has been successfully applied in many real-world problems in different contexts. Therefore, this work presents a simplified and efficient complex network-based approach for the classification of mRNA and ncRNA sequences. Experiments were performed to evaluate the proposed approach considering a dataset with six different species and with important methods in the literature such as CPC, CPC2 and PLEK. The results indicated the assertiveness of the proposed approach achieving average accuracy rates higher than 98% in the classification of mRNA and ncRNA considering all compared species. Besides, the proposed approach presents fewer variations on its results when compared to competitor methods, indicating its robustness and suitability for the classification of transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahm, R.: Friedrich Miescher and the discovery of DNA. Dev. Biol. 278(2), 274–288 (2005)

    Article  CAS  Google Scholar 

  2. Sanger, F., et al.: Nucleotide sequence of bacteriophage \(\phi \) X174 DNA. Nature 265(5596), 687–695 (1977)

    Article  CAS  Google Scholar 

  3. Hogeweg, P.: The roots of bioinformatics in theoretical biology. PLOS Comput. Biol. 7(3), 1–5 (2011)

    Article  Google Scholar 

  4. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)

    Article  CAS  Google Scholar 

  5. Costa-Silva, J., Domingues, D., Lopes, F.M.: RNA-Seq differential expression analysis: an extended review and a software tool. PLOS One 12(12), 1–18 (2017)

    Article  Google Scholar 

  6. Garber, M., Grabherr, M.G., Guttman, M., Trapnell, C.: Computational methods for transcriptome annotation and quantification using RNA-Seq. Nat. Methods 8(6), 469–477 (2011)

    Article  CAS  Google Scholar 

  7. Panwar, B., Arora, A., Raghava, G.P.S.: Prediction and classification of ncRNAs using structural information. BMC Genomics 15(1), 1–13 (2014)

    Article  CAS  Google Scholar 

  8. Wang, K.C., Chang, H.W.: Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6), 904–914 (2011)

    Article  CAS  Google Scholar 

  9. Peng, Y., Li, J., Zhu, L.: Chapter 8 - cancer and non-coding RNAs. In: Ferguson, B.S. (ed.)Nutritional Epigenomics, volume 14 of Translational Epigenetics, pp. 119–132. Academic Press (2019)

    Google Scholar 

  10. Long, Y., Wang, X., Youmans, D.T., Cech, T.R.: How do lncRNAs regulate transcription? Sci. Adv. 3(9), p. eaao2110 (2017)

    Google Scholar 

  11. Chen, X., Yan, G.-Y.: Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 29(20), 2617–2624 (2013)

    Article  CAS  Google Scholar 

  12. Huarte, M.: The emerging role of lncRNAs in cancer. Nat. Med. 21(11), 1253–1261 (2015)

    Article  CAS  Google Scholar 

  13. Peng, W.-X., Koirala, P., Mo, Y.-Y.: LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41), 5661–5667 (2017)

    Article  CAS  Google Scholar 

  14. Kung, J.T., Colognori, D., Lee, J.T.: Long noncoding RNAs: past, present, and future. Genetics 193(3), 651–669 (2013)

    Article  CAS  Google Scholar 

  15. Kong, L., et al.: CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35(suppl\_2), W345–W349 (2007)

    Google Scholar 

  16. Kang, Y.J., et al.: Cpc2 a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 45(W1), W12–W16 (2017)

    Article  CAS  Google Scholar 

  17. Li, A., Zhang, J., Zhou, Z.: PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 15(1), 311 (2014)

    Article  Google Scholar 

  18. Ito, E.A., Katahira, I., Vicente, F.F.D.R., Pereira, L.F.P., Lopes, F.M.: BASiNET - biological sequences network: a case study on coding and non-coding RNAs identification. Nucleic Acids Res. 46(16), e96–e96 (2018)

    Article  Google Scholar 

  19. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  Google Scholar 

  20. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

    Google Scholar 

  21. Diestel, R.: Graph Theory, 3rd edn. Springer-Verlag, Heidelberg (2005)

    Google Scholar 

  22. Barabási, A.L.: Linked: How Everything Is Connected to Everything Else and What It Means. Plume, New York (2003)

    Google Scholar 

  23. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  CAS  Google Scholar 

  24. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  Google Scholar 

  25. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  Google Scholar 

  26. Lopes, F.M., Cesar, R.M., da F. Costa, L.: AGN simulation and validation model. In: Bazzan, A.L.C., Craven, M., Martins, N.F. (eds.) BSB 2008. LNCS, vol. 5167, pp. 169–173. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85557-6_17

    Chapter  Google Scholar 

  27. Yi Ming Zou: Modeling and analyzing complex biological networks incooperating experimental information on both network topology and stable states. Bioinformatics 26(16), 2037–2041 (2010)

    Article  Google Scholar 

  28. Lopes, F.M., Cesar Jr, R.M., Costa, L.D.F.: Gene expression complex networks: synthesis, identification, and analysis. J. Comput. Biol. 18(10), 1353–1367 (2011)

    Google Scholar 

  29. Lopes, F.M., Martins Jr., D.C., Barrera, J., Cesar Jr., R.M.: A feature selection technique for inference of graphs from their known topological properties: revealing scale-free gene regulatory networks. Inf. Sci. 272, 1–15 (2014)

    Article  Google Scholar 

  30. da Rocha Vicente, F.F., Lopes, F.M.: SFFS-SW: a feature selection algorithm exploring the small-world properties of GNs. In: Comin, M., Käll, L., Marchiori, E., Ngom, A., Rajapakse, J. (eds.) PRIB 2014. LNCS, vol. 8626, pp. 60–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09192-1_6

    Chapter  Google Scholar 

  31. de Lima, G.V.L., Castilho, T.R., Bugatti, P.H., Saito, P.T.M., Lopes, F.M.: A complex network-based approach to the analysis and classification of images. CIARP 2015. LNCS, vol. 9423, pp. 322–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25751-8_39

    Chapter  Google Scholar 

  32. de Lima, G.V., Saito, P.T., Lopes, F.M., Bugatti, P.H.: Classification of texture based on bag-of-visual-words through complex networks. Expert Syst. Appl. 133, 215–224 (2019)

    Article  Google Scholar 

  33. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  34. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2014)

    Google Scholar 

  35. Evans, J.S., Murphy, M.A.: rfUtilities. R package version 2.1-3 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Grant number 406099 /2016-2) and the Fundação Araucária e do Governo do Estado do Paraná/SETI (Grant number 035/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício Martins Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Breve, M.M., Lopes, F.M. (2020). A Simplified Complex Network-Based Approach to mRNA and ncRNA Transcript Classification. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics