Skip to main content

A Systems Biology Driven Approach to Map the EP300 Interactors Using Comprehensive Protein Interaction Network

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12558))

Included in the following conference series:

  • 488 Accesses

Abstract

EP300 is one of the putative tumor-suppressor genes and is mutated/deleted, under expressed/overexpressed in several types of cancer. The role of EP300 and its interactions during cancer is crucial to explore its reprogramming events that lead to malignant phenotype and acquisition of drug resistance. In this context, all the experimentally valid EP300 interactors were collected from the primary protein-protein interaction (PPI) databases and followed by tracing their subcellular location using the UniProtKB database. Further, all the EP300 interactors were categorized based on their subcellular location and functionally annotated with the DAVID gene ontology tool. Subsequently, the interactome of EP300 with its interactors was constructed and identified TP53, CREBBP, JUN, HDAC1, CTNNB1, MYC, PCNA, HDAC2, FOS, and KAT2B as the top first neighbors of EP300. Together, the present analysis gives a comprehensive overview on EP300 interactors located in different subcellular locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karamouzis, M.V., Konstantinopoulos, P.A., Papavassiliou, A.G.: Roles of CREB-binding protein (CBP)/p300 in respiratory epithelium tumorigenesis. Cell Res. 17, 324–332 (2007). https://doi.org/10.1038/cr.2007.10

    Article  CAS  PubMed  Google Scholar 

  2. Dutto, I., Scalera, C., Prosperi, E.: CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell. Mol. Life Sci. 75(8), 1325–1338 (2017). https://doi.org/10.1007/s00018-017-2717-4

    Article  CAS  PubMed  Google Scholar 

  3. Mees, S.T., Mardin, W.A., Wendel, C., et al.: EP300-A miRNA-regulated metas-tasis suppressor gene in ductal adenocarcinomas of the pancreas. Int. J. Cancer 126, 114–124 (2010). https://doi.org/10.1002/ijc.24695

    Article  CAS  PubMed  Google Scholar 

  4. Yang, H., Pinello, C.E., Luo, J., et al.: Small-molecule inhibitors of acetyltrans-ferase p300 identified by high-throughput screening are potent anticancer agents. Mol. Cancer Ther. 12, 610–620 (2013). https://doi.org/10.1158/1535-7163.MCT-12-0930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bi, Y., Zhang, L., et al.: EP300 promotes tumor development and correlates with poor prognosis in esophageal squamous carcinoma. Oncotarget 9(1), s376–s392 (2018)

    Google Scholar 

  6. Asaduzzaman, M., et al.: Tumour suppressor EP300, a modulator of paclitaxel resistance and stemness, is downregulated in metaplastic breast cancer. Breast Cancer Res. Treat. 163(3), 461–474 (2017). https://doi.org/10.1007/s10549-017-4202-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Babu, A., et al.: Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish. Biochim. Biophys. Acta - Mol. Basis Dis. 1864, 1203–1215 (2018). https://doi.org/10.1016/j.bbadis.2018.01.029.

  8. Gayther, S.A., Batley, S.J., Linger, L., et al.: Mutations truncating the EP300 acetylase in human cancers. Nat. Genet. 24, 300–303 (2000). https://doi.org/10.1038/73536

    Article  CAS  PubMed  Google Scholar 

  9. Chan, H.M., La Thangue, N.B.: p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell. Sci. 114, 2363–2373 (2001)

    CAS  PubMed  Google Scholar 

  10. Ogryzko, V.V., Schiltz, R.L., Russanova, V., et al.: The transcriptional coactiva-tors p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996)

    Article  CAS  Google Scholar 

  11. Yang, X.J., Seto, E.: Lysine acetylation: codified crosstalk with other post-translational modifications. Mol. Cell. 31, 449–461 (2008). https://doi.org/10.1016/j.molcel.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vo, N., Goodman, R.H.: CREB-binding protein and p300 in transcriptional regulation. J. Biol. Chem. 276, 13505–13508 (2001). https://doi.org/10.1074/jbc.R000025200https://doi.org/10.1074/jbc.R000025200

    Article  CAS  PubMed  Google Scholar 

  13. Bedford, D.C., Brindle, P.K.: Is histone acetylation the most important physio-logical function for CBP and p300? Aging (Albany NY) 4, 247–55 (2012). https://doi.org/10.18632/aging.100453

  14. Attar, N., Kurdistani, S.K.: Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb. Perspect. Med. 7, a026534 (2017). https://doi.org/10.1101/cshperspect.a026534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dancy, B.M., Cole, P.A.: Protein lysine acetylation by p300/CBP. Chem. Rev. 115, 2419–2452 (2015). https://doi.org/10.1021/cr500452k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., et al.: IntAct: an open source molecular interaction database. Nucleic Acids Res. 32, D452–D455 (2004). https://doi.org/10.1093/nar/gkh052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stark, C., Breitkreutz, B.J., Reguly, T., et al.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006). https://doi.org/10.1093/nar/gkj109

    Article  CAS  PubMed  Google Scholar 

  18. Alonso-López, D., Gutiérrez, M.A., Lopes, K.P., et al.: APID interactomes: providing proteome-based interactomes with controlled quality for multiple spe-cies and derived networks. Nucleic Acids Res. 44, W529–W535 (2016). https://doi.org/10.1093/nar/gkw363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cowley, M.J., Pinese, M., Kassahn, K.S., et al.: PINA v2.0: mining interactome modules. Nucleic Acids Res. 40, D862–D865 (2012). https://doi.org/10.1093/nar/gkr967

    Article  CAS  PubMed  Google Scholar 

  20. Calderone, A., Castagnoli, L., Cesareni, G.: mentha: aresource for browsing integrated protein-interaction networks. Nat. Methods 10, 690–691 (2013). https://doi.org/10.1038/nmeth.2561

    Article  CAS  PubMed  Google Scholar 

  21. Patil, A., Nakai, K., Nakamura, H.: HitPredict: a database of quality assessed protein-protein interactions in nine species. Nucleic Acids Res. 39, D744–D749 (2011). https://doi.org/10.1093/nar/gkq897

    Article  CAS  PubMed  Google Scholar 

  22. Orii, N., Ganapathiraju, M.K.: Wiki-Pi: a web-server of annotated human protein-protein interactions to aid in discovery of protein function. PLoS ONE 7, e49029 (2012). https://doi.org/10.1371/journal.pone.0049029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McDowall, M.D., Scott, M.S., Barton, G.J.: PIPs: human protein-protein interac-tion prediction database. Nucleic Acids Res. 37, D651–D656 (2009). https://doi.org/10.1093/nar/gkn870

    Article  CAS  PubMed  Google Scholar 

  24. He, M., Wang, Y., Li, W.: PPI Finder: a mining tool for human protein-protein interactions. PLoS ONE 4, e4554 (2009). https://doi.org/10.1371/journal.pone.0004554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Q.C., Petrey, D., Garzón, J.I., et al.: PrePPI: a structure-informed data-base of protein-protein interactions. Nucleic Acids Res. 41, D828–D833 (2013). https://doi.org/10.1093/nar/gks1231

    Article  CAS  PubMed  Google Scholar 

  26. Bateman, A., Martin, M.J., O’Donovan, C., et al.: UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  27. Thomas, P.D., Campbell, M.J., Kejariwal, A., et al.: PANTHER: a library of pro-tein families and subfamilies indexed by function. Genome Res 13, 2129–2141 (2003). https://doi.org/10.1101/gr.772403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mi, H., Dong, Q., Muruganujan, A., et al.: PANTHER version 7: improved phy-logenetic trees, orthologs and collaboration with the gene ontology consortium. Nucleic Acids Res. 38, D204–D210 (2010). https://doi.org/10.1093/nar/gkp1019

    Article  CAS  PubMed  Google Scholar 

  29. Huang, D.W., Sherman, B.T., Tan, Q., et al.: The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007). https://doi.org/10.1186/gb-2007-8-9-r183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shannon, P., Markiel, A., Ozier, O., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szklarczyk, D., Morris, J.H., Cook, H., et al.: The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017). https://doi.org/10.1093/nar/gkw937

    Article  CAS  PubMed  Google Scholar 

  32. Kong, F.Y., et al.: Bioinformatics analysis of the proteins interacting with LASP-1 and their association with HBV-related hepatocellular carcinoma. Sci. Rep. 7, 1–5 (2017). https://doi.org/10.1038/srep44017

    Article  Google Scholar 

  33. Kaypee, S., et al.: Mutant and wild-type tumor suppressor p53 induces p300 autoacetylation. iScience 4, 260–272 (2018). https://doi.org/10.1016/j.isci.2018.06.002

  34. Attar, N., Kurdistani, S.K.: Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb. Perspect. Med. 7 (2017). https://doi.org/10.1101/cshperspect.a026534.

  35. Yu, W., et al.: Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry Yu et al.: Β-catenin cooperates with CREB binding protein β-catenin cooperates with CREB binding protein to promote the growth of tumor cells cellular physiology and biochemistry cellular physiology and biochemistry. Cell Physiol. Biochem. 44, 467–478 (2017). https://doi.org/10.1159/000485013.

  36. Wang, Y.N., Chen, Y.J., Chang, W.C.: Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in keratin 16 gene expression. Mol. Pharmacol. 69, 85–98 (2006). https://doi.org/10.1124/mol.105.016220

    Article  CAS  PubMed  Google Scholar 

  37. Kandagalla, S., Grishina, M., Potemkin, V., Shekarappa, S.B., Gollapalli, P.: A systems biology driven approach to map the EP300 interactors using comprehensive protein interaction network (2020). https://doi.org/10.5281/ZENODO.4112838

Download references

Acknowledgement

The work was supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0011 and by the Ministry of Science and Higher Education of Russia (Grant FENU-2020–0019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shivananda Kandagalla or Vladimir Potemkin .

Editor information

Editors and Affiliations

Ethics declarations

All authors declared that they have no competing interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kandagalla, S., Grishina, M., Potemkin, V., Shekarappa, S.B., Gollapalli, P. (2020). A Systems Biology Driven Approach to Map the EP300 Interactors Using Comprehensive Protein Interaction Network. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics