Skip to main content

Analyzing Switch Regions of Human Rab10 by Molecular Dynamics Simulations

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2020)

Abstract

Rab10 is a small GTPase that regulates cellular processes by alternating between its GDP-bound inactive and the GTP-bound active states. Studies have shown that functional deficiencies in the Rab10 pathways are implicated in ciliophaties, gliobastomas and neurodegenerative diseases. Thus, the modulation of Rab10 activity may represent an interesting strategy in drug discovery. In order to identify potential Rab10 inhibitors for the treatment of Alzheimer’s disease, we studied the mobility of the switch1-interswitch-switch2 surface to understand the active “ON” and inactive “OFF” states of this enzyme. Even today, no in silico study on Rab10 linked to GTP and GDP has been carried out. We used molecular dynamics simulations to investigate the atomic movements of the Rab10 switch regions associated with these nucleotides. We found noticeable differences in the local flexibility of switch 1 when Rab10 was linked to GDP. However, the heuristic method used was not able to successfully differentiate the flexibility of switch 2 region. We hypothesized that the flexibility of the switch 1 region can be used as an indicator of in silico studies that search potential competitive inhibitors based on nucleotides against Rab10. Furthermore, the present study can be useful for research that involves the description on-to-off process of other target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan, T., Wang, L., Gao. J., et al.: Rab10 Phosphorylation is a Prominent Pathological Feature in Alzheimer’s Disease. J. Alzheimer Dis. 63(1), 157–165 (2018)

    Google Scholar 

  2. Chua, C.E.L., Tang, B.L.: Rab10 – a traffic controller in multiple cellular pathways and locations. J. Cellular Phys. 233(9), 6483–6494 (2018)

    Article  CAS  Google Scholar 

  3. Ordónez, A.J.L., Fernández, B., Fdez, E., et al.: RAB8, RAB10 and RILPL1 contribute to both LRRK2 kinase–mediated centrosomal cohesion and ciliogenesis deficits. Human Mol. Genetycs 28(21), 3552–3568 (2019)

    Article  Google Scholar 

  4. Shen, G., Mao, Y., Su, Z., et al.: PSMB8-AS1 activated by ELK1 promotes cell proliferation in glioma via regulating miR-574-5p/RAB10. Biomed. Pharmacother. 122(1), 109658 (2020)

    Article  CAS  Google Scholar 

  5. Ridge, P.G., Karch, C.M., Hsu, S., et al.: Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med. 9(1), 100 (2017)

    Article  Google Scholar 

  6. Tavana, J.P., Rosene, M., Jensen, N.O., et al.: RAB10: an Alzheimer’s disease resilience locus and potential drug target. Clin. Interv. Aging 14(1), 73–79 (2019)

    CAS  PubMed  Google Scholar 

  7. Good, R.G., Müller, M.P., Wu, Y.: Mechanisms of action of Rab proteins, key regulators of intracellular vesicular transport. Bio. Chem. 398(5–6), 565–575 (2017)

    Article  Google Scholar 

  8. Pylypenko, O., Hammich, H., Yu, I., et al.: Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases 9(1–2), 22–48 (2018)

    Article  CAS  Google Scholar 

  9. Wang, J., Chou, K.: Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Bio. Biophys. Res. Commun. 390(3), 608–612 (2009)

    Article  CAS  Google Scholar 

  10. Rai, A., Oprisko, A., Campos, G., et al.: bMERB domains are bivalent Rab8 family effectors evolved by gene duplication. eLife 5(1), e186475 (2016)

    Google Scholar 

  11. Berman, H.M., Westbrook, J., Feng, et al.: The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Google Scholar 

  12. Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234(1), 779–815 (1993)

    Article  CAS  Google Scholar 

  13. O’Boyle, N.M., Banck, M., James, C.A., et al.: Open Babel: An open chemical toolbox. J. Cheminformatics 3(1), 33 (2011)

    Article  Google Scholar 

  14. Trott, M., Olson, A.J.: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(1), 455–461 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schrödinger Release 2020–3.: Maestro. New York NY (2020)

    Google Scholar 

  16. Spoel, D.V.D., Lindahl, E., Hess, B., et al.: GROMACS: Fast, flexible, and free. J. Comput. Chem. 26(1), 1701–1718 (2005)

    Article  Google Scholar 

  17. Huang, J., MacKerell Jr., A.D.: CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 34(1), 2135–2145 (2013)

    Article  CAS  Google Scholar 

  18. Vanommeslaeghe, K., MacKerell Jr., A.D.: Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. J. Chem. Inf. Model. 52(12), 3144–3154 (2012)

    Article  CAS  Google Scholar 

  19. Paul, M., Panda, M.K., Thatoi, E.H.: Developing Hispolon-based novel anticancer therapeutics against human (NF-κβ) using in silico approach of modelling, docking and protein dynamics. J. Biomol. Struct. Dyn. 37(15), 3947–3967 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levy Bueno Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alves, L.B., Castillo-Ordoñez, W.O., Giuliatti, S. (2020). Analyzing Switch Regions of Human Rab10 by Molecular Dynamics Simulations. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics