Skip to main content

Computational Simulations for Cyclizations Catalyzed by Plant Monoterpene Synthases

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2020)

Abstract

Metabolic pathways collectively define the biochemical repertory on an organism exposing the steps of its production. In silico metabolic pathways have been reconstructed using a wide range of computational methods. The reconstructed metabolic pathways can vary in some aspects, among which, in the context of this work, it is relevant to remark the data structure and granularity of biochemical details. Inferring chemical reactions using graph grammar rules is a method that exposes the initial, intermediates, and final products by modeling pathways over graphs and hypergraphs. Plant monoterpenes are volatile compounds with applications in industry, biotechnology, and medicine. They also play a vital ecological role. The last enzymatic reaction in the plant monoterpenes production chain is plentiful of possibilities due to the promiscuous nature of the terpene synthases (TPS), a case in which the application of inferring chemical reactions using graph grammar rules is suitable. In this work, we designed graph grammar rules that express cyclization reactions catalyzed by plant monoterpene synthases. As a result, it was generated a reachable chemical space of potential plant monoterpene blend, which can be computationally exploitable. In addition, these graph grammar rules were added to the 2Path, and a graphical interface was provided to aid the simulation code outlining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/waldeyr/2PathTerpenes.

References

  1. Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M.M., Fan, Y.: Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta 246(5), 803–816 (2017). https://doi.org/10.1007/s00425-017-2749-x

    Article  CAS  PubMed  Google Scholar 

  2. Aharoni, A., Jongsma, M.A., Bouwmeester, H.J.: Volatile science? metabolic engineering of terpenoids in plants. Trends Plant Sci. 10(12), 594–602 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: Inferring chemical reaction patterns using graph grammar rule composition. J. Syst. Chem. 4, 4 (2013)

    Article  CAS  Google Scholar 

  4. Andersen, J.L., Flamm, C., Merkle, D., Stadler, P.F.: A Software Package for Chemically Inspired Graph Transformation. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 73–88. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8_5

    Chapter  Google Scholar 

  5. Block, A.K., Vaughan, M.M., Schmelz, E.A., Christensen, S.A.: Biosynthesis and function of terpenoid defense compounds in maize (zea mays). Planta 249(1), 21–30 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. Bohlmann, J., Steele, C.L., Croteau, R.: Monoterpene synthases from grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)- limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chemistry 272(35), 21784–21792 (1997)

    Article  CAS  Google Scholar 

  7. Chen, F., Tholl, D., Bohlmann, J., Pichersky, E.: The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66(1), 212–229 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. Chen, H., Li, G., Köllner, T.G., Jia, Q., Gershenzon, J., Chen, F.: Positive darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus oryza. BMC Plant Biol. 14(1), 1–12 (2014)

    Article  Google Scholar 

  9. Chow, J.Y., et al.: Computational-guided discovery and characterization of a sesquiterpene synthase from Streptomyces clavuligerus. Proceedings of the National Academy of Sciences of the United States of America 112(18), 5661–6 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christianson, D.W.: Structural and chemical biology of terpenoid cyclases. Chemical Rev. 117(17), 11570–11648 (2017)

    Article  CAS  Google Scholar 

  11. Degenhardt, J., Köllner, T.G., Gershenzon, J.: Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15–16), 1621–1637 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A., Greiner, R., Manach, C., Wishart, D.S.: BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. Journal of Cheminformatics 11(1), 1–25 (2019). https://doi.org/10.1186/s13321-018-0324-5

    Article  Google Scholar 

  13. Dong, L., Jongedijk, E., Bouwmeester, H., Van Der Krol, A.: Monoterpene biosynthesis potential of plant subcellular compartments. New Phytologist 209(2), 679–690 (2016)

    Article  CAS  Google Scholar 

  14. Duigou, T., du Lac, M., Carbonell, P., Faulon, J.L.: Retrorules: a database of reaction rules for engineering biology. Nucleic Acids Res. 47(D1), D1229–D1235 (2018)

    Article  PubMed Central  Google Scholar 

  15. Gao, Y., Honzatko, R.B., Peters, R.J.: Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat. Prod. Rep. 29(10), 1153 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gershenzon, J., Dudareva, N.: The function of terpene natural products in the natural world. Nat. Chem. Biol. 3(7), 408–414 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Godard, K.A., White, R., Bohlmann, J.: Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry 69(9), 1838–1849 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. Gutensohn, M., et al.: Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J. 75(3), 351–363 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. Hastings, J., et al.: Chebi in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 44(D1), D1214–D1219 (2016)

    Article  CAS  PubMed  Google Scholar 

  20. Heinig, U., Gutensohn, M., Dudareva, N., Aharoni, A.: The challenges of cellular compartmentalization in plant metabolic engineering. Current Opinion Biotechnol. 24(2), 239–246 (2013)

    Article  CAS  Google Scholar 

  21. Himsolt, M.: Gml: a portable graph file format. Html page under http://www.fmi.uni-passau.de/graphlet/gml/gml-tr.html, Universität Passau (1997)

  22. Isegawa, M., Maeda, S., Tantillo, D.J., Morokuma, K.: Predicting pathways for terpene formation from first principles-routes to known and new sesquiterpenes. Chem. Sci. 5(4), 1555–1560 (2014)

    Article  CAS  Google Scholar 

  23. Kanehisa, M., et al.: The kegg database. In: Novartis Foundation Symposium, pp. 91–100. Wiley Online Library (2002)

    Google Scholar 

  24. Kempinski, C., Jiang, Z., Bell, S., Chappell, J.: Metabolic engineering of higher plants and algae for isoprenoid production. In: Schrader, J., Bohlmann, J. (eds.) Biotechnology of Isoprenoids. ABE, vol. 148, pp. 161–199. Springer, Cham (2015). https://doi.org/10.1007/10_2014_290

    Chapter  Google Scholar 

  25. Kim, S., et al.: Pubchem 2019 update: improved access to chemical data. Nucleic Acids Res. 47(D1), D1102–D1109 (2019)

    Article  PubMed  Google Scholar 

  26. Köllner Schnee, C., Gershenzon, J., Degenhardt, J.: The Variability of Sesquiterpenes Emitted from Two Zea mays\(\backslash \)nCultivars Is Controlled by Allelic Variation of Two Terpene\(\backslash \)nSynthase Genes Encoding Stereoselective Multiple\(\backslash \)nProduct Enzymes. The Plant Cell 16(May), 1115–1131 (2004)

    Article  PubMed  Google Scholar 

  27. Liu, W., et al.: Structure, function and inhibition of ent-kaurene synthase from bradyrhizobium japonicum. Sci. Rep. 4, 612 (2014)

    Google Scholar 

  28. Liu, W., et al.: Structure, function and inhibition of ent-kaurene synthase from bradyrhizobium japonicum. Sci. Rep. 4, 6214 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1), 181–224 (1993)

    Article  Google Scholar 

  30. Maeda, S., et al.: Artificial Force Induced Reaction (AFIR) method for exploring quantum chemical potential energy surfaces. Chemical Record 16(5), 2232–2248 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Nagegowda, D.A.: Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters 584(14), 2965–2973 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. O’maille, P.E., et al.: Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chemical Biol. 4(10), 617–623 (2008)

    Google Scholar 

  33. da Silva, W.M.C., et al.: Exploring plant sesquiterpene diversity by generating chemical networks. Processes 7(4), 240 (2019)

    Article  CAS  Google Scholar 

  34. Systems, D.C.I.: A reaction transform language. http://daylight.com/dayhtml/doc/theory/theory.smirks.html. Accessed 30 Jan 2019

  35. Systems, D.C.I.: SMARTS - a language for describing molecular patterns. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (2008). Accessed 30 Jan 2019

  36. Talapatra, S.K., Talapatra, B.: Biosynthesis of terpenoids: the oldest natural products. Chemistry of Plant Natural Products, pp. 317–344. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45410-3_5

    Chapter  Google Scholar 

  37. Tian, B., Poulter, C.D., Jacobson, M.P.: Defining the product chemical space of monoterpenoid synthases. PLoS Comput. Biol. 12(8), 1–13 (2016)

    Article  CAS  Google Scholar 

  38. Vattekkatte, A., Garms, S., Brandt, W., Boland, W.: Enhanced structural diversity in terpenoid biosynthesis: enzymes, substrates and cofactors. Organic Biomolecular Chemistry 16(3), 348–362 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Y., Nielsen, J., Liu, Z.: Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Res. 17(8), fox080 (2017)

    Google Scholar 

  40. Zhuang, X., et al.: Dynamic evolution of herbivore-induced sesquiterpene biosynthesis in sorghum and related grass crops. The Plant J. 69(1), 70–80 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded in part by CAPES through a sandwich scholarship to W.M.C.d.S. It was additionally supported in part by the Independent Research Fund Denmark, Natural Sciences, grant DFF-7014-00041. M.E.M.T.W. and M.B. has been continuously supported by productivity fellowship from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldeyr Mendes Cordeiro da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, W.M.C. et al. (2020). Computational Simulations for Cyclizations Catalyzed by Plant Monoterpene Synthases. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics