Skip to main content

In silico Pathogenomic Analysis of Corynebacterium Pseudotuberculosis Biovar Ovis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12558))

Abstract

Corynebacterium pseudotuberculosis is a pathogenic bacterium that may transmit caseous lymphadenitis, veterinary infection that severely attacks animals such as goats and sheep. It is known that the toxin Phosholipase D is the major virulence factor associated with this disease. However, genomic computational studies can reveal further information concerning pathogenicity mechanisms of bacteria. Through sequence analysis tools, it is possible to assess the genomic bases of these mechanisms and to analyze similarities among the different strains of this species. Nitrate reductase-negative bacteria are classified in the biovar ovis, able to transmit the infection. Thus, we developed an in silico comparative pathogenomic analysis with genomes of 33 strains of C. pseudotuberculosis biovar ovis strains, which cause caseous lymphadenitis. Looking for the identification of pathogenicity-related genes, virulence factors and composition of pathogenicity islands, it was possible to computationally predict pathogenicity potentials of target proteins and their respective biological processes during infection, besides identification of prophage genome elements and prediction of protein protein interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dorella, F., Pacheco, L., Oliveira, S., et al.: Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet. Res. 37(2), 201–218 (2016)

    Article  Google Scholar 

  2. Araújo, C., Alves, J., Lima, A., et al.: The Genus Corynebacterium in the Genomic Era. Basic Biology and Applications of Actinobacteria, Shymaa Enany, IntechOpen (2018)

    Google Scholar 

  3. Araújo, C., Blanco, I., Souza, L., et al.: In silico functional prediction of hypothetical proteins from the core genome of Corynebacterium pseudotuberculosis. PeerJ 8, e9643 (2020)

    Article  Google Scholar 

  4. Biberstein, E., Knight, H., Jang, S.: Two biotypes of Corynebacterium pseudotuberculosis. The Vet. Rec. 89, 691–692 (1971)

    Article  CAS  Google Scholar 

  5. Williamson, L.: Caseous lymphadenitis in small ruminants. The Vet. Clin. North Am. Food Anim. Pract. 17(2), 359–371 (2001)

    Article  CAS  Google Scholar 

  6. Van Dijk, E., Jaszczyszyn, Y., Naquin, D., et al.: The third revolution in sequencing technology. Trends Genet. 34(9), 666–681 (2018)

    Article  Google Scholar 

  7. Guedes, M., Souza, B., Sousa, T., et al.: Infecção por Corynebacterium pseudotuberculosis em equinos: aspectos microbiológicos, clínicos e preventivos. Pesquisa Veterinária Brasileira 35(8), 701–708 (2015)

    Article  Google Scholar 

  8. Weerasekera, D.: Characterization of virulence factors of Corynebacterium diphtheriae and Corynebacterium ulcerans. thesis (2019)

    Google Scholar 

  9. Ruiz, J., D’afonseca, V., Silva, A., et al.: Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS ONE 6(4), e18551 (2011)

    Article  CAS  Google Scholar 

  10. Pallen, M., Wren, B.: Bacterial pathogenomics. Nature 449(7164), 835–842 (2007)

    Article  CAS  Google Scholar 

  11. Zhao, Y., Wu, J., Yang, J., et al.: PGAP: Pan-genomes analysis pipeline. Bioinformatics 28(3), 416–418 (2012)

    Article  CAS  Google Scholar 

  12. Quiroz-Castañeda, R.: Pathogenomics and molecular advances in pathogen identification. In: Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment. IntechOpen (2018)

    Google Scholar 

  13. Cassiday, P., Pawloski, L., Tiwari, T., et al.: Analysis of toxigenic Corynebacterium ulcerans strains revealing potential for false-negative real-time PCR results. J. Clin. Microbiol. 46(1), 331–333 (2007)

    Article  Google Scholar 

  14. Lo, B.: Diptheria. Medscape. https://emedicine.medscape.com/article/782051-print. Accessed on 24 08 2020

  15. Guimarães, L., Soares, S., Trost, E., et al.: Genome informatics and vaccine targets in Corynebacterium urealyticum using two whole genomes, comparative genomics, and reverse vaccinology. BMC Genom. 16, 5 (2015)

    Article  Google Scholar 

  16. Collin, M., Fischetti, V.: A novel secreted endoglycosidase from Enterococcus faecalis with activity on human immunoglobulin G and ribonuclease B. J. Biol. Chem. 279(21), 22558–22570 (2004)

    Article  CAS  Google Scholar 

  17. Liu, B., Zheng, D., Jin, Q., et al.: VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47(1), 687–692 (2019)

    Article  Google Scholar 

  18. Soares, S., Geyik, H., Ramos, R., et al.: GIPSy: genomic island prediction software. J. Biotechnol. 232, 2–11 (2016)

    Article  CAS  Google Scholar 

  19. Veltri, D., Wight, M., Crouch, J.: SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res. 44, 41–45 (2016)

    Article  Google Scholar 

  20. Gupta, A., Kapil, R., Dhakan, D.B., et al.: MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data. PLoS ONE 9, 4 (2014)

    Google Scholar 

  21. Szklarczyk, D., Gable, A., Lyon, D., et al.: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), 607–613 (2019)

    Article  Google Scholar 

  22. Zhou, Y., Liang, Y., Lynch, K., et al.: PHAST: a fast phage search tool. Nucleic Acids Res. 39, 347–352 (2011)

    Article  Google Scholar 

  23. Ton-That, H., Marraffini, L., Schneewind, O.: Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol. Microbiol. 53, 251–261 (2004)

    Article  CAS  Google Scholar 

  24. Ton-That, H., Schneewind, O.: Assembly of pili on the surface of Corynebacterium diphtheriae. Mol. Microbiol. 50(4), 1429–1438 (2003)

    Article  CAS  Google Scholar 

  25. Mandlik, A., Swierczynski, A., Das, A., et al.: Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 64, 111–124 (2007)

    Article  CAS  Google Scholar 

  26. Hansmeier, N., Chao, T., Daschkey, S., et al.: A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411. Proteomics 7(7), 1076–1096 (2007)

    Article  CAS  Google Scholar 

  27. Tauch, A., Kaiser, O., Hain, T., et al.: Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J. Bacteriol. 187(13), 4671–4682 (2005)

    Article  CAS  Google Scholar 

  28. Schmitt, M., Drazek, E.: Construction and consequences of directed mutations affecting the hemin receptor in pathogenic Corynebacterium species. J. Bacteriol. 183, 1476–1481 (2001)

    Article  CAS  Google Scholar 

  29. Stojiljkovic, I., Perkins-Balding, D.: Processing of heme and heme-containing proteins by bacteria. DNA Cell Biol. 21(4), 281–295 (2002)

    Article  CAS  Google Scholar 

  30. Kunkle, C., Schmitt, M.: Analysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheriae. J. Bacteriol. 187(2), 422–433 (2005)

    Article  CAS  Google Scholar 

  31. Qian, Y., Lee, J., Holmes, R.: Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J. Bacteriol. 184(17), 4846–4856 (2002)

    Article  CAS  Google Scholar 

  32. D’Aquino, J., Tetenbaum-Novatt, J., White, A., et al.: Mechanism of metal ion activation of the diphtheria toxin repressor DtxR. Proc. Nat. Acad. Sci. U.S. Am. 102(51), 18408–18413 (2005)

    Article  Google Scholar 

  33. Oram, D., Avdalovic, A., Holmes, R.: Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect. Immun. 72(4), 1885–1895 (2004)

    Article  CAS  Google Scholar 

  34. McKean, S., Davies, J., Moore, R.: Expression of phospholipase D, the major virulence factor of Corynebacterium pseudotuberculosis, is regulated by multiple environmental factors and plays a role in macrophage death. Microbiology 153, 2203–2211 (2007)

    Article  CAS  Google Scholar 

  35. Brüssow, H.: Impact of phages on evolution of bacterial pathogenicity. In: Bacterial Pathogenomics, ASM Press (2007)

    Google Scholar 

  36. Guerrero, J., de Oca Jiménez, R., Dibarrat, J., et al.: Isolation and molecular characterization of Corynebacterium pseudotuberculosis from sheep and goats in Mexico. Microbial Pathog. 117, 304–309 (2018)

    Article  CAS  Google Scholar 

  37. de Sá, M.A., Gouveia, G., Krewer, C.: Distribution of PLD and FagA, B, C and D genes in Corynebacterium pseudotuberculosis isolates from sheep and goats with caseous lymphadenitis. Genet. Mol. Biol. 36(2), 265–268 (2013)

    Article  Google Scholar 

  38. Galvão, C., Fragoso, S., de Oliveira, C., et al.: Identification of new Corynebacterium pseudotuberculosis antigens by immunoscreening of gene expression library. BMC Microbiol. 17(1), 202 (2017)

    Article  Google Scholar 

  39. Silva, W., Folador, E., Soares, S., et al.: Label-free quantitative proteomics of Corynebacterium pseudotuberculosis isolates reveals differences between Biovars ovis and equi strains. BMC Genom. 18(1), 451 (2017)

    Article  Google Scholar 

  40. Raynal, J., Bastos, B., Vilas-Boas, P., et al.: Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal serum. BMC Res. Notes 1, 11 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Carneiro Folador .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanco, I.R., Araújo, C.L., Folador, A.C. (2020). In silico Pathogenomic Analysis of Corynebacterium Pseudotuberculosis Biovar Ovis. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics