Skip to main content

Hypusine Plays a Role in the Translation of Short mRNAs and Mediates the Polyamine and Autophagy Pathways in Saccharomyces Cerevisiae

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2021)

Abstract

The cell highly regulates the translational process aiming to maintain cellular stability and viability for mechanisms at the transcriptional, translational, or metabolic level, such as the control of transcripts forwarded for translation or autophagy. The translation elongation factor 5A (eIF5A) is evolutionarily conserved and essential in eukaryotic cells. eIF5A undergoes a post-translational modification, called hypusination, which has two enzymatic steps. The first stage, catalyzed by the deoxyhypusine synthase, occurs in a spermidine-dependent manner. Spermidine is a polyamine in which intracellular imbalance can affect some cellular processes. Studies show that this modification is fundamental to the role of eIF5A in the cell, assisting in the translation of a subset of mRNA. We analyzed transcriptional and translational profiles of the deoxyhypusine synthase mutant (dys1-1) in Saccharomyces cerevisiae. From Polysome-seq, our results showed that the lack of hypusination leads to the impairment on the translation of short ORFs, that code ribosomal mitochondrial proteins. From both profiles, the expression of genes and transcription factors of the polyamine pathway, which needs strict cell control, was altered. Besides, the inhibition of hypusination by GC7 showed an increase in the protein level of two autophagy proteins, Atg1 and Atg33, the latter is specific to mitophagy. In response to the metabolic problems caused by non-hypusination, the cell can respond with mitophagy and macroautophagy to maintain cell stability.

This study was financially supported by grant 2010/50044-6, São Paulo Research Foundation (FAPESP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson, J.N., Simon, M.I., Guthrie, C., Fink, G.R.: Guide to yeast genetics and molecular biology 194, 1–863 (1991). https://doi.org/10.2307/3760517

    Article  Google Scholar 

  2. Annette, K., et al.: Modification of eukaryotic initiation factor 5A from plasmodium vivax by a truncated deoxyhypusine synthase from plasmodium falciparum: an enzyme with dual enzymatic properties. Bioorg. Med. Chem. 15(18), 6200–6207 (2007). https://doi.org/10.1016/J.BMC.2007.06.026

    Article  Google Scholar 

  3. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001). https://doi.org/10.1214/aos/1013699998

    Article  Google Scholar 

  4. Caplan, A.J., Cyr, D.M., Douglas, M.G.: YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71(7), 1143–1155 (1992). https://doi.org/10.1016/S0092-8674(05)80063-7

    Article  CAS  PubMed  Google Scholar 

  5. Chattopadhyay, M.K., Chen, W., Poy, G., Cam, M., Stiles, D., Tabor, H.: Microarray studies on the genes responsive to the addition of spermidine or spermine to a saccharomyces cerevisiae spermidine synthase mutant. Yeast 26(10), 531–544 (2009). https://doi.org/10.1002/yea.1703

    Article  CAS  PubMed  Google Scholar 

  6. Chen, K.Y., Liu, A.Y.: Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. NeuroSignals 6, 105–109 (1997). https://doi.org/10.1159/000109115

    Article  CAS  Google Scholar 

  7. Chen, Y., Klionsky, D.J.: The regulation of autophagy - unanswered questions (2011). https://doi.org/10.1242/jcs.064576

  8. Demarqui, F.M., Paiva, A.C.S., Santoni, MMi., Watanabe, T.F., Valentini, S.R., Zanelli, C.F.: Polysome-seq as a measure of translational profile from deoxyhypusine synthase mutant in saccharomyces cerevisiae. In: BSB 2020. LNCS, vol. 12558, pp. 168–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65775-8_16

    Chapter  Google Scholar 

  9. Dever, T.E., Dinman, J.D., Green, R.: Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb. Perspect Biol. 10, a032649 (2018). https://doi.org/10.1101/cshperspect.a032649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Engel, S.R., et al.: The reference genome sequence of saccharomyces cerevisiae: then and now. G3: Genes Genomes Genet 4(3), 389–398 (2014). https://doi.org/10.1534/g3.113.008995

  11. Galvão, F.C., Rossi, D., Silveira, W.D.S., Valentini, S.R., Zanelli, C.F.: The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. PLOS ONE 8(4), e60140 (2013). https://doi.org/10.1371/JOURNAL.PONE.0060140

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gamble, C.E., Brule, C.E., Dean, K.M., Fields, S., Grayhack, E.J.: Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166(3), 679–690 (2016). https://doi.org/10.1016/j.cell.2016.05.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heyer, E.E., Moore, M.J.: Redefining the translational status of 80s monosomes. Cell 164(4), 757–769 (2016). https://doi.org/10.1016/j.cell.2016.01.003, https://www.sciencedirect.com/science/article/pii/S0092867416000040

  14. Hurowitz, E.H., Brown, P.O.: Genome-wide analysis of mRNA lengths in saccharomyces cerevisiae. Genome Biol. 5(1), 3889–3894 (2003). https://doi.org/10.1186/gb-2003-5-1-r2

    Article  Google Scholar 

  15. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., Weissman, J.S.: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924), 218–223 (2009). https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ivanov, I.P., et al.: Polyamine control of translation elongation regulates start site selection on antizyme inhibitor mRNA via ribosome queuing. Mol. Cell 70(2), 254-264.e6 (2018). https://doi.org/10.1016/j.molcel.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. KJ, L., TD, S.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif.) 25(4), 402–408 (2001). https://doi.org/10.1006/METH.2001.1262

  18. Lubas, M., et al.: eIF 5A is required for autophagy by mediating ATG 3 translation. EMBO Rep. 19(6), e46072 (2018). https://doi.org/10.15252/embr.201846072

  19. Madeo, F., Tobias, E., Sabrina, B., Christoph, R., Guido, K.: Spermidine: a novel autophagy inducer and longevity elixir. Autophagy 6(1), 160–162 (2010). https://doi.org/10.4161/AUTO.6.1.10600

    Article  PubMed  Google Scholar 

  20. Melis, N., et al.: Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome. J. Am. Soc. Nephrol. 28(3), 811–822 (2017). https://doi.org/10.1681/ASN.2016010012

    Article  CAS  PubMed  Google Scholar 

  21. Miller-Fleming, L., Olin-Sandoval, V., Campbell, K., Ralser, M.: Remaining mysteries of molecular biology: the role of polyamines in the cell (2015). https://doi.org/10.1016/j.jmb.2015.06.020

  22. Oertlin, C., Lorent, J., Murie, C., Furic, L., Topisirovic,I., Larsson, O.: Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Res. 47(12), e70 (2019). https://doi.org/10.1093/nar/gkz223

  23. Oliver H, L., Nira J, R., A Lewis, F., Rose J, R.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1), 265–275 (1951)

    Google Scholar 

  24. Park, M.H., Nishimura, K., Zanelli, C.F., Valentini, S.R.: Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids 38(2), 491–500 (2010). https://doi.org/10.1007/s00726-009-0408-7

    Article  CAS  PubMed  Google Scholar 

  25. Pegg, A.E.: Functions of polyamines in mammals (2016). https://doi.org/10.1074/jbc.R116.731661

  26. Puleston, D.J., et al.: Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation. Cell Metab. 30(2), 352-363.e8 (2019). https://doi.org/10.1016/j.cmet.2019.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rossi, D., Kuroshu, R., Zanelli, C.F., Valentini, S.R.: eIF5A and EF-P: two unique translation factors are now traveling the same road (2014). https://doi.org/10.1002/wrna.1211

  28. Schnier, J., Schwelberger, H.G., Smit-McBride, Z., Kang, H.A., Hershey, J.W.: Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. (1991). https://doi.org/10.1128/MCB.11.6.3105

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schuller, A.P., Green, R.: Roadblocks and resolutions in eukaryotic translation. Nat. Rev. Mol. Cell Biol. 19, 526–541 (2018). https://doi.org/10.1038/s41580-018-0011-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schuller, A.P., Wu, C.C.C., Dever, T.E., Buskirk, A.R., Green, R.: eIF5A functions globally in translation elongation and termination. Mol. Cell 66(2), 194-205.e5 (2017). https://doi.org/10.1016/j.molcel.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shi, X.P., Yin, K.C., Ahern, J., Davis, L.J., Stern, A.M., Waxman, L.: Effects of N1-guanyl-1,7-diaminoheptane, an inhibitor of deoxyhypusine synthase, on the growth of tumorigenic cell lines in culture. Biochim. et Biophys. Acta - Mol. Cell Res. 1310(1), 119–126 (1996). https://doi.org/10.1016/0167-4889(95)00165-4

  32. Shirokikh, N.E., Preiss, T.: Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Wiley Interdisc. Rev. RNA 9(4),(2018). https://doi.org/10.1002/wrna.1473

  33. Sina, G., et al.: Global analysis of protein expression in yeast. Nature 425(6959), 737–741 (2003). https://doi.org/10.1038/NATURE02046

  34. Thompson, M.K., Rojas-Duran, M.F., Gangaramani, P., Gilbert, W.V.: The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. eLife 5, e11154 (2016). https://doi.org/10.7554/eLife.11154

  35. Weinberg, D.E., Shah, P., Eichhorn, S.W., Hussmann, J.A., Plotkin, J.B., Bartel, D.P.: Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation. Cell Rep. 14(7), 1787–1799 (2016). https://doi.org/10.1016/j.celrep.2016.01.043

  36. Yi, C., et al.: Formation of a Snf1-Mec1-Atg1 module on mitochondria governs energy deprivation-induced autophagy by regulating mitochondrial respiration. Dev. Cell 41(1), 59-71.e4 (2017). https://doi.org/10.1016/j.devcel.2017.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paiva, A.C.S., Demarqui, F.M., Santoni, M.M., Valentini, S.R., Zanelli, C.F. (2021). Hypusine Plays a Role in the Translation of Short mRNAs and Mediates the Polyamine and Autophagy Pathways in Saccharomyces Cerevisiae. In: Stadler, P.F., Walter, M.E.M.T., Hernandez-Rosales, M., Brigido, M.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2021. Lecture Notes in Computer Science(), vol 13063. Springer, Cham. https://doi.org/10.1007/978-3-030-91814-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91814-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91813-2

  • Online ISBN: 978-3-030-91814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics