Skip to main content

Combining Orthology and Xenology Data in a Common Phylogenetic Tree

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2021)

Abstract

In mathematical phylogenetics, types of events in a gene tree T are formalized by vertex labels t(v) and set-valued edge labels \(\lambda (e)\). The orthology and paralogy relations between genes are a special case of a map \(\delta \) on the pairs of leaves of T defined by \(\delta (x,y)=q\) if the last common ancestor \({\text {lca}}(x,y)\) of x and y is labeled by an event type q, e.g., speciation or duplication. Similarly, a map \(\varepsilon \) with \(m\in \varepsilon (x,y)\) if \(m\in \lambda (e)\) for at least one edge e along the path from \({\text {lca}}(x,y)\) to y generalizes xenology, i.e., horizontal gene transfer. We show that a pair of maps \((\delta ,\varepsilon )\) derives from a tree \((T,t,\lambda )\) in this manner if and only if there exists a common refinement of the (unique) least-resolved vertex labeled tree \((T_{\delta },t_{\delta })\) that explains \(\delta \) and the (unique) least-resolved edge labeled tree \((T_{\varepsilon },\lambda _{\varepsilon })\) that explains \(\varepsilon \) (provided both trees exist). This result remains true if certain combinations of labels at incident vertices and edges are forbidden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28, i283–i291 (2012). https://doi.org/10.1093/bioinformatics/bts225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Böcker, S., Dress, A.W.M.: Recovering symbolically dated, rooted trees from symbolic ultrametrics. Adv. Math. 138, 105–125 (1998). https://doi.org/10.1006/aima.1998.1743

    Article  Google Scholar 

  3. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT. Theor. Comput. Sci. 351, 296–302 (2006). https://doi.org/10.1016/j.tcs.2005.10.033

    Article  Google Scholar 

  4. Fitch, W.: Homology: a personal view on some of the problems. Trends Genet. 16, 227–231 (2000). https://doi.org/10.1016/S0168-9525(00)02005-9

    Article  CAS  PubMed  Google Scholar 

  5. Geiß, M., Anders, J., Stadler, P.F., Wieseke, N., Hellmuth, M.: Reconstructing gene trees from Fitch’s xenology relation. J. Math. Biol. 77(5), 1459–1491 (2018). https://doi.org/10.1007/s00285-018-1260-8

    Article  PubMed  Google Scholar 

  6. Geiß, M., et al.: Best match graphs and reconciliation of gene trees with species trees. J. Math. Biol. 80(5), 1459–1495 (2020). https://doi.org/10.1007/s00285-020-01469-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harel, D., Tarjan, R.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 338–355 (1984). https://doi.org/10.1137/0213024

    Article  Google Scholar 

  8. Hellmuth, M.: Biologically feasible gene trees, reconciliation maps and informative triples. Algorithms Mol. Biol. 12, 23 (2017). https://doi.org/10.1186/s13015-017-0114-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hellmuth, M., Hernandez-Rosales, M., Huber, K.T., Moulton, V., Stadler, P.F., Wieseke, N.: Orthology relations, symbolic ultrametrics, and cographs. J. Math. Biol. 66, 399–420 (2013). https://doi.org/10.1007/s00285-012-0525-x

    Article  PubMed  Google Scholar 

  10. Hellmuth, M., Long, Y., Geiß, M., Stadler, P.F.: A short note on undirected Fitch graphs. Art Discrete Appl. Math. 1, P1.08 (2018). https://doi.org/10.26493/2590-9770.1245.98c

  11. Hellmuth, M., Schaller, D., Stadler, P.F.: Compatibility of partitions, hierarchies, and split systems (2021, submitted). arXiv arXiv:2104.14146

  12. Hellmuth, M., Seemann, C.R., Stadler, P.F.: Generalized Fitch graphs II: sets of binary relations that are explained by edge-labeled trees. Discrete Appl. Math. 283, 495–511 (2020). https://doi.org/10.1016/j.dam.2020.01.036

    Article  Google Scholar 

  13. Hellmuth, M., Stadler, P.F., Wieseke, N.: The mathematics of xenology: di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations. J. Math. Biol. 75(1), 199–237 (2016). https://doi.org/10.1007/s00285-016-1084-3

    Article  PubMed  Google Scholar 

  14. Hellmuth, M., Seemann, C.R., Stadler, P.F.: Generalized Fitch graphs III: symmetrized Fitch maps and sets of symmetric binary relations that are explained by unrooted edge-labeled trees. Discrete Math. Theor. Comput. Sci 23(1), 13 (2021)

    Google Scholar 

  15. Jones, M., Lafond, M., Scornavacca, C.: Consistency of orthology and paralogy constraints in the presence of gene transfers (2017). arXiv arXiv:1705.01240

  16. Lafond, M., Hellmuth, M.: Reconstruction of time-consistent species trees. Algorithms Mol. Biol. 15, 16 (2020). https://doi.org/10.1186/s13015-020-00175-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nøjgaard, N., Geiß, M., Merkle, D., Stadler, P.F., Wieseke, N., Hellmuth, M.: Time-consistent reconciliation maps and forbidden time travel. Algorithms Mol. Biol. 13, 2 (2018). https://doi.org/10.1186/s13015-018-0121-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schaller, D., Hellmuth, M., Stadler, P.F.: A linear-time algorithm for the common refinement of rooted phylogenetic trees on a common leaf set (2021, submitted). arXiv arXiv:2107.00072

  19. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)

    Google Scholar 

  20. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform 8(2), 517–535 (2011). https://doi.org/10.1109/TCBB.2010.14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Deutsche Forschungsgemeinschaft (STA 850/51-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hellmuth, M., Michel, M., Nøjgaard, N.N., Schaller, D., Stadler, P.F. (2021). Combining Orthology and Xenology Data in a Common Phylogenetic Tree. In: Stadler, P.F., Walter, M.E.M.T., Hernandez-Rosales, M., Brigido, M.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2021. Lecture Notes in Computer Science(), vol 13063. Springer, Cham. https://doi.org/10.1007/978-3-030-91814-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91814-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91813-2

  • Online ISBN: 978-3-030-91814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics