Skip to main content

Clustering Analysis Indicates Genes Involved in Progesterone-Induced Oxidative Stress in Pancreatic Beta Cells: Insights to Understanding Gestational Diabetes

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2022)

Abstract

Clustering analysis in gene expression data has been shown to be useful for understanding gene function, gene regulation, and cell processes and subtypes. Due to the wide availability of techniques for this task, the choice of an appropriate method is critical. Trying to mitigate this problem, Saelens and coauthors performed, in 2018, a benchmark study based on external validation indices. The present work proposes an extension of this analysis by including internal indices and applying it in a study case to investigate gestational diabetes through experiments on microarray data of pancreatic beta cells submitted to supra-pharmacological doses of progesterone. The results of the clustering method selected by the proposed extension have shown to be helpful in an enrichment analysis that identified TXNIP gene as relevant for future work aiming at understanding in more details the gestational diabetes phenomena.

The authors thank to the high performance computing resources of University of São Paulo (https://hpc.usp.br/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.qiagen.com/us/.

  2. 2.

    The human datasets were excluded since the authors used a different criteria for module definition, called ‘regulatory circuits’.

References

  1. Chen, J., et al.: Thioredoxin-interacting protein deficiency induces AKT/BCL-XL signaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 22(10), 3581–3594 (2008)

    Article  CAS  Google Scholar 

  2. Chen, R.Y., et al.: Duodenal microbiota in stunted undernourished children with enteropathy. N. Engl. J. Med. 383(4), 321–333 (2020)

    Article  CAS  Google Scholar 

  3. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. Gene Ontology Consortium: Gene ontology consortium: going forward. Nucleic Acids Res. 43(D1), D1049–D1056 (2015)

    Google Scholar 

  5. Dalton, L., Ballarin, V., Brun, M.: Clustering algorithms: on learning, validation, performance, and applications to genomics. Curr. Genomics 10(6), 430–445 (2009)

    Article  CAS  Google Scholar 

  6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2, 224–227 (1979)

    Article  Google Scholar 

  7. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  Google Scholar 

  8. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863–14868 (1998)

    Article  CAS  Google Scholar 

  9. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  10. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Hoboken (1988)

    Google Scholar 

  11. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. Knowl. Data Eng. 16(11), 1370–1386 (2004). https://doi.org/10.1109/TKDE.2004.68

    Article  Google Scholar 

  12. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)

    Article  CAS  Google Scholar 

  13. Kuleshov, M.V., et al.: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1), W90–W97 (2016)

    Article  CAS  Google Scholar 

  14. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9(1), 1–13 (2008)

    Article  Google Scholar 

  15. Lawlor, M.A., Cao, W., Ellison, C.E.: A transposon expression burst accompanies the activation of Y-chromosome fertility genes during drosophila spermatogenesis. Nat. Commun. 12(1), 1–12 (2021)

    Article  Google Scholar 

  16. Lei, Z., et al.: TXNIP deficiency promotes \(\beta \)-cell proliferation in the HFD-induced obesity mouse model. Endocrine Connections 11(4) (2022)

    Google Scholar 

  17. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  Google Scholar 

  18. Luebbert, L., Pachter, L.: Efficient querying of genomic reference databases with gget. bioRxiv (2022)

    Google Scholar 

  19. Nunes, V.A., et al.: Progesterone induces apoptosis of insulin-secreting cells: insights into the molecular mechanism. J. Endocrinol. 221(2), 273–284 (2014)

    Article  CAS  Google Scholar 

  20. Oliver, S.: Guilt-by-association goes global. Nature 403(6770), 601–602 (2000)

    Article  CAS  Google Scholar 

  21. Oyelade, J., et al.: Clustering algorithms: their application to gene expression data. Bioinform. Biol. Insights 10, BBI-S38316 (2016)

    Google Scholar 

  22. Pergialiotis, V., Bellos, I., Hatziagelaki, E., Antsaklis, A., Loutradis, D., Daskalakis, G.: Progestogens for the prevention of preterm birth and risk of developing gestational diabetes mellitus: a meta-analysis. Am. J. Obstet. Gynecol. 221(5), 429–436 (2019)

    Article  CAS  Google Scholar 

  23. Piñero, J., et al.: The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48(D1), D845–D855 (2020)

    Google Scholar 

  24. Poudel, S., et al.: Revealing 29 sets of independently modulated genes in staphylococcus aureus, their regulators, and role in key physiological response. Proc. Natl. Acad. Sci. 117(29), 17228–17239 (2020)

    Article  CAS  Google Scholar 

  25. Rojas, J., et al.: Pancreatic beta cell death: novel potential mechanisms in diabetes therapy. J. Diab. Res. 2018 (2018)

    Google Scholar 

  26. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  27. Saelens, W., Cannoodt, R., Saeys, Y.: A comprehensive evaluation of module detection methods for gene expression data. Nat. Commun. 9(1), 1–12 (2018)

    Article  CAS  Google Scholar 

  28. Sastry, A.V., Hu, A., Heckmann, D., Poudel, S., Kavvas, E., Palsson, B.O.: Independent component analysis recovers consistent regulatory signals from disparate datasets. PLoS Comput. Biol. 17(2), e1008647 (2021)

    Article  CAS  Google Scholar 

  29. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  CAS  Google Scholar 

  30. Tan, J., et al.: Independent component analysis of E. coli’s transcriptome reveals the cellular processes that respond to heterologous gene expression. Metabolic Eng. 61, 360–368 (2020)

    Google Scholar 

  31. Wiwie, C., Baumbach, J., Röttger, R.: Comparing the performance of biomedical clustering methods. Nat. Methods 12(11), 1033–1038 (2015)

    Article  CAS  Google Scholar 

  32. Wondafrash, D.Z., Nire’a, A.T., Tafere, G.G., Desta, D.M., Berhe, D.A., Zewdie, K.A.: Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. Diab. Metab. Syndr. Obes.: Targets Ther. 13, 43 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Marinelli Dativo dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marinelli Dativo dos Santos, L., Rufino Oliveira, P., Azevedo Martins, A.K. (2022). Clustering Analysis Indicates Genes Involved in Progesterone-Induced Oxidative Stress in Pancreatic Beta Cells: Insights to Understanding Gestational Diabetes. In: Scherer, N.M., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science(), vol 13523. Springer, Cham. https://doi.org/10.1007/978-3-031-21175-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21175-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21174-4

  • Online ISBN: 978-3-031-21175-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics