Skip to main content

Scientific Workflow Interactions: An Application to Cancer Gene Identification

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2022)

Abstract

Reproducibility, resilience, and large-scale data processing have become fundamental for developing scientific research, particularly in bioinformatics. One may consider the use of Scientific Workflow Management Systems (SWfMS) to address these topics. However, user interactivity during the execution of workflows, especially with a preliminary result generated by an inner workflow task, is still an issue. We present in this paper an architecture that meets the interactive requirements of these systems, allowing the development of a flexible layer for end users to interact directly with SWfMS. Besides presenting our software solution, we show an application in the context of cancer gene identification for drug design.

Supported by the Brazilian Science and Technology Ministery and by CAPES Funding Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Prefect architecture: https://docs.prefect.io/orchestration/server/architecture.html.

References

  1. Albrecht, J.: How the GDPR will change the world. Eur. Data Prot. Law Rev. 2(3), 287–289 (2017). https://doi.org/10.21552/edpl/2016/3/4

    Article  Google Scholar 

  2. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: an extensible system for design and execution of scientific workflows. In: Proceedings of the International Conference on Scientific and Statistical Database Management, SSDBM, vol. 16, pp. 423–424 (2004). https://doi.org/10.1109/ssdm.2004.1311241

  3. Barker, A., van Hemert, J.: Scientific workflow: a survey and research directions. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 746–753. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68111-3_78

    Chapter  Google Scholar 

  4. Dagogo-Jack, I., Shaw, A.T.: Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018). https://doi.org/10.1038/nrclinonc.2017.166

    Article  CAS  Google Scholar 

  5. Davidson, S.B., et al.: Provenance in scientific workflow systems. IEEE Data Eng. Bull. 30(4), 44–50 (2007)

    Google Scholar 

  6. DeelmanDeelman, E., et al.: Mapping abstract complex workflows onto grid environments. J. Grid Comput. 1(1), 25–39 (2003). https://doi.org/10.1023/A:1024000426962

    Article  Google Scholar 

  7. Django Software Foundation: Django. https://djangoproject.com

  8. Facebook: React js. https://reactjs.org

  9. Franceschini, A., Franceschini, M.A., RUnit, S., biocViews Network, B.: Package ‘STRINGdb’ (2015)

    Google Scholar 

  10. Guan, Z., et al.: Grid-flow: a grid-enabled scientific workflow system with a petri-net-based interface. Concurrency Comput. Pract. Experience 18(10), 1115–1140 (2006). https://doi.org/10.1002/cpe.988

    Article  Google Scholar 

  11. Keefe, D.F.: Integrating visualization and interaction research to improve scientific workflows. IEEE Comput. Graph. Appl. 30(2), 8–13 (2010). https://doi.org/10.1109/MCG.2010.30

    Article  Google Scholar 

  12. Langfelder, P., Horvath, S.: Wgcna: an r package for weighted correlation network analysis. BMC Bioinf. 9(1), 1–13 (2008)

    Article  Google Scholar 

  13. Laraway, S., Snycerski, S., Pradhan, S., Huitema, B.E.: An overview of scientific reproducibility: consideration of relevant issues for behavior science/analysis. Perspect. Behav. Sci. 42(1), 33–57 (2019). https://doi.org/10.1007/s40614-019-00193-3

    Article  Google Scholar 

  14. Liu, J., Wilson, A., Gunning, D.: Workflow-based human-in-the-loop data analytics. In: ACM International Conference Proceeding Series, pp. 49–52 (2014). https://doi.org/10.1145/2609876.2609888

  15. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for mere mortals. Futur. Gener. Comput. Syst. 25(5), 541–551 (2009). https://doi.org/10.1016/j.future.2008.06.013

    Article  Google Scholar 

  16. Mohammed, Y., et al.: PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J. Proteomics 106, 151–161 (2014). https://doi.org/10.1016/j.jprot.2014.04.018

    Article  CAS  Google Scholar 

  17. Newsletter, F.: What Is Negative Engineering? (2022). https://future.com/negative-engineering-and-the-art-of-failing-successfully

  18. Pinney, J.W., Westhead, D.R.: Betweenness-based decomposition methods for social and biological networks. Interdis. Stat. Bioinf. 25, 87–90 (2006)

    Google Scholar 

  19. Prefect Technologies Inc: Prefect. https://www.prefect.io

  20. Rahman, S., Kandogan, E.: Characterizing practices, limitations, and opportunities related to text information extraction workflows: a human-in-the-loop perspective. In: Association for Computing Machinery (ACM), pp. 1–15 (2022). https://doi.org/10.1145/3491102.3502068

  21. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  CAS  Google Scholar 

  22. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3), 431–432 (2010). https://doi.org/10.1093/bioinformatics/btq675

  23. Tsimberidou, A.M., Fountzilas, E., Nikanjam, M., Kurzrock, R.: Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat. Rev. 86, 102019 (2020). https://doi.org/10.1016/j.ctrv.2020.102019

    Article  CAS  Google Scholar 

  24. Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts Valley (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Munaro Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vieira, D.M., Heine, A., de Armas, E.M., de Lanna, C.A., Boroni, M., Lifschitz, S. (2022). Scientific Workflow Interactions: An Application to Cancer Gene Identification. In: Scherer, N.M., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science(), vol 13523. Springer, Cham. https://doi.org/10.1007/978-3-031-21175-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21175-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21174-4

  • Online ISBN: 978-3-031-21175-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics