Skip to main content

In Silico Analysis of the Genomic Potential for the Production of Specialized Metabolites of Ten Strains of the  Bacillales Order Isolated from the Soil of the Federal District, Brazil

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2022)

Abstract

Secondary or specialized metabolites play an important ecological role for the producing organisms. Bacteria isolated from soils are a major source of specialized metabolites. Species of Bacillus and related genera, collectively referred to as aerobic endospore-forming bacteria (AEFB), produce specialized metabolites with high structural and functional diversity. In this study, ten genomes of AEFB strains isolated from the soil of Federal District, Brazil, were scanned for specialized metabolism genes. Using the antiSMASH 6.0 bacterial standalone version, we identified 153 putative gene clusters codifying for specialized metabolite synthesis in these ten strains. Such clusters encode, for example, enzymes for bacillibactin, bacillisin, macrolactin H, bacilliaene, paenibacterin, nostamid A and macrobervin, revealing pathways 100% similar to the genomic information available in the antiSMASH database. The results suggest that AEFB are promising for exploring known and unknown specialized metabolites, notably antimicrobial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Andrade Cavalcante, D., et al.: Ultrastructural analysis of spores from diverse Bacillales species isolated from Brazilian soil. Environ. Microbiol. Rep. 11(2), 155–164 (2019)

    Article  Google Scholar 

  2. Arbsuwan, N., et al.: Purification and characterization of macrolactins and amicoumacins from bacillus licheniformis bfp011: a new source of food antimicrobial substances. CyTA-J. Food 16(1), 50–60 (2018)

    Article  CAS  Google Scholar 

  3. Blin, K., et al.: antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47(W1), W81–W87 (2019)

    Article  CAS  Google Scholar 

  4. Crits-Christoph, A., Diamond, S., Butterfield, C.N., Thomas, B.C., Banfield, J.F.: Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558(7710), 440–444 (2018)

    Article  CAS  Google Scholar 

  5. Guzmán-Chávez, F., Zwahlen, R.D., Bovenberg, R.A., Driessen, A.J.: Engineering of the filamentous fungus penicillium chrysogenum as cell factory for natural products. Front. Microbiol. 9, 2768 (2018)

    Article  Google Scholar 

  6. Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H., Peschel, A.: The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 19(11), 726–739 (2021)

    Article  CAS  Google Scholar 

  7. Keller, N.P., Turner, G., Bennett, J.W.: Fungal secondary metabolism-from biochemistry to genomics. Nat. Rev. Microbiol. 3(12), 937–947 (2005)

    Article  CAS  Google Scholar 

  8. Mandic-Mulec, I., Prosser, J.I.: Diversity of endospore-forming bacteria in soil: characterization and driving mechanisms. In: Logan, N., Vos, P. (eds.) Endospore-Forming Soil Bacteria, pp. 31–59. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-19577-8_2

    Chapter  Google Scholar 

  9. Martens, T., et al.: Bacteria of the roseobacter clade show potential for secondary metabolite production. Microb. Ecol. 54(1), 31–42 (2007). https://doi.org/10.1007/s00248-006-9165-2

    Article  CAS  Google Scholar 

  10. Miethke, M., Bisseret, P., Beckering, C.L., Vignard, D., Eustache, J., Marahiel, M.A.: Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J. 273(2), 409–419 (2006)

    Article  CAS  Google Scholar 

  11. Rabbee, M.F., Ali, M.S., Choi, J., Hwang, B.S., Jeong, S.C., Baek, K.H.: Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6), 1046 (2019)

    Article  CAS  Google Scholar 

  12. Romano, S.: Ecology and biotechnological potential of bacteria belonging to the genus pseudovibrio. Appl. Environ. Microbiol. 84(8), e02516-17 (2018)

    Article  Google Scholar 

  13. Sato, T., Yoshida, S., Hoshino, H., Tanno, M., Nakajima, M., Hoshino, T.: Sesquarterpenes (c35 terpenes) biosynthesized via the cyclization of a linear c35 isoprenoid by a tetraprenyl-\(\beta \)-curcumene synthase and a tetraprenyl-\(\beta \)-curcumene cyclase: identification of a new terpene cyclase. J. Am. Chem. Soc. 133(25), 9734–9737 (2011)

    Article  CAS  Google Scholar 

  14. Sharrar, A.M., Crits-Christoph, A., Méheust, R., Diamond, S., Starr, E.P., Banfield, J.F.: Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. MBio 11(3), e00416-20 (2020)

    Article  Google Scholar 

  15. Shenderov, B.A., Sinitsa, A.V., Zakharchenko, M.M., Lang, C.: Cellular metabiotics and metabolite metabiotics. In: METABIOTICS, pp. 63–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34167-1_14

    Chapter  Google Scholar 

  16. Singh, B.P., Rateb, M.E., Rodriguez-Couto, S., Polizeli, M.D.L.T.D.M., Li, W.J.: Microbial secondary metabolites: recent developments and technological challenges. Front. Microbiol. 10, 914 (2019)

    Article  Google Scholar 

  17. Sumi, C.D., Yang, B.W., Yeo, I.C., Hahm, Y.T.: Antimicrobial peptides of the genus bacillus: a new era for antibiotics. Can. J. Microbiol. 61(2), 93–103 (2015)

    Article  CAS  Google Scholar 

  18. Teramoto, J.R.S., Sachs, R.C.C., Garcia, V.L.: Atividade antimicrobiana das folhas de duas variedades de oliveira e a contextualização deste coproduto da produção paulista e mundial de azeite de oliva. Rev. Intellectus 37, 63–83 (2017)

    Google Scholar 

  19. Tyc, O., Song, C., Dickschat, J.S., Vos, M., Garbeva, P.: The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol. 25(4), 280–292 (2017)

    Article  CAS  Google Scholar 

  20. Valduga, E., Tatsch, P.O., Tiggemann, L., Treichel, H., Toniazzo, G., Zeni, J., Di Luccio, M., Furigo, A.: Produção de carotenoides: microrganismos como fonte de pigmentos naturais. Quim. Nova 32(9), 2429–2436 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Teixeira De-Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Araújo Mesquita, F., da Silva, W.M.C., De-Souza, M.T. (2022). In Silico Analysis of the Genomic Potential for the Production of Specialized Metabolites of Ten Strains of the  Bacillales Order Isolated from the Soil of the Federal District, Brazil. In: Scherer, N.M., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2022. Lecture Notes in Computer Science(), vol 13523. Springer, Cham. https://doi.org/10.1007/978-3-031-21175-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21175-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21174-4

  • Online ISBN: 978-3-031-21175-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics