Skip to main content

transcAnalysis: A Snakemake Pipeline for Differential Expression and Post-transcriptional Modification Analysis

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2023)

Abstract

The transcAnalysis pipeline is a comprehensive tool that allows the analysis of transcriptome data. The pipeline allows for analysis of differential expression, alternative splicing, lncRNA and RNA editing analysis, with a specific focus on A-to-I editing mediated by the ADAR protein. This type of RNA editing is widespread and can significantly affect gene regulation and function. The results from these analyses are integrated, and the events are associated with each gene. The pipeline also integrates results that can help correlate gene expression and post-transcriptional events. This allows for a comprehensive understanding of the functional impact and provides insight into the biological processes and pathways associated with these events. One of the significant advantages of the transcAnalysis pipeline is its ability to perform all these analyses with a single command using the Snakemake package. This feature simplifies the analysis process and makes it accessible to researchers with limited bioinformatics expertise. Its user-friendly ability to perform multiple analyses with a single command make it an ideal choice for researchers looking to analyze transcriptome data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bioconductor.org/packages/release/bioc/html/DESeq2.html.

  2. 2.

    https://github.com/Xinglab/rmats-turbo.

  3. 3.

    https://github.com/jumphone/SPRINT.

  4. 4.

    https://cran.r-project.org/web/packages/LncPath/.

  5. 5.

    https://github.com/alexdobin/STAR.

References

  1. Hardwick, S., Deveson, I., Mercer, T.: Reference standards for next-generation sequencing. Nat. Rev. Genet. 18(8), 473–484 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Marasco, L.E., Kornblihtt, A.R.: The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24(4), 242–254 (2023)

    Article  CAS  PubMed  Google Scholar 

  3. Song, B., Shiromoto, Y., Minakuchi, M., Nishikura, K.: The role of RNA editing enzyme ADAR1 in human disease. WIRES 13(1), e1665 (2023)

    Article  Google Scholar 

  4. Mölder, F., et al.: Sustainable data analysis with Snakemake. F1000Res 18, 10–33 (2021)

    Google Scholar 

  5. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 15(12), 550 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shen, S., et al.: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U.S.A. 111(51), E5593–E5601 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, F., Lu, Y., Yan, S., Xing, Q., Tian, W.: SPRINT: an SNP-free toolkit for identifying RNA editing sites. Bioinformatics 33(22), 3538–3548 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, J., et al.: LncRNAs2Pathways: identifying the pathways influenced by a set of lncRNAs of interest based on a global network propagation method. Sci. Rep. 7, 46566 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gillespie, M., et al.: The Reactome pathway knowledgebase 2022. Nucleic Acids Res. 50(D1), D687–D692 (2022)

    Google Scholar 

  10. Mishra, G.R., et al.: Human protein reference database-2006 update. Nucleic Acids Res. (34), D411–D414 (2006)

    Google Scholar 

  11. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45(D1), D353–D361 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. Nishimura, D.: BioCarta. Biotech Softw. Internet Rep. 2(3), 117–120 (2001)

    Article  Google Scholar 

  13. Dobin, A., et al.: STAR: ultrafast universal RNA-Seq aligner. Bioinformatics 29(1), 15–21 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro H. A. Barros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barros, P.H.A., Silva, W.M.C., Brigido, M.M. (2023). transcAnalysis: A Snakemake Pipeline for Differential Expression and Post-transcriptional Modification Analysis. In: Reis, M.S., de Melo-Minardi, R.C. (eds) Advances in Bioinformatics and Computational Biology. BSB 2023. Lecture Notes in Computer Science(), vol 13954. Springer, Cham. https://doi.org/10.1007/978-3-031-42715-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42715-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42714-5

  • Online ISBN: 978-3-031-42715-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics