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Abstract. Dengue has become one of the most important worldwide arthropod-
borne diseases around the world. Here, one hundred and two Brazilian dengue
virus (DENV) III patients and controls were genotyped for 322 innate immunity
gene loci. All biological data (including age, sex and genome background) were
analyzed using Machine Learning techniques to discriminate tendency to severe
dengue phenotype development. Our current approach produces median values
for accuracy greater than 86%, with sensitivity and specificity over 98% and
51%, respectively. Genome data information from 13 key immune polymorphic
SNPs was used under different dominant or recessive models. Our approach is
a valuable tool for early diagnosis of the severe form of dengue infection and
can be used to identify individuals at high risk of developing this form of the
disease even in uninfected individuals. The model also identifies various genes
involved dengue severity.



1. Introduction
is a global public health concern that is caused by dengue virus (DENV), a positive-sense
RNA virus belonging to the Flaviviridae family. It is estimated that the annual global inci-
dence is 390 million cases, of which 96 million develop a clinically apparent self-limited
disease[Bhatt et al. 2013]. In infected individuals, dengue fever (DF) occasionally pro-
gresses to dengue hemorrhagic fever (DHF) and other severe forms, that have been more
recently generally classified as Severe Dengue (SD) according to the 2009 World Health
Organization[World Health Organization et al. 2009] dengue classification guideline. SD
classification includes several life-threatening manifestations including vascular leakage,
organ failure, and shock syndrome. The mechanisms leading to the development of SD is
an object of intense research. Dengue disease severity has been correlated with viral
loads[Paradoa et al. 1987, Soundravally and Hoti 2007, Sakuntabhai et al. 2005], circu-
lating viral proteins[Wang et al. 2003, Libraty et al. 2002] and exacerbated complement
activity[Acioli-Santos et al. 2008, Nascimento et al. 2009].

Studies have found associations between single genetic polymorphisms (SNPs)
and dengue infection phenotype in multiple genes including dendritic cell-specific in-
ter cellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), FCcRIIa,
Transporter associated with antigen processing (TAP), Vitamin D receptor (VDR), Cyto-
toxic T lymphocyte-associated antigen-4 (CTLA-4), Acute plasma glycoprotein mannose
binding lectin (MBL) and human platelet-specific antigens (HPA), Cytokines (IL, IFN,
TNF, etc), in the Fcγ receptor IIA (a pro-inflammatory regulatory Fc receptor) gene and
the vitamin D receptor and Human Leukocyte Antigen genes (HLA, i.e human histo-
compatibility complex)[de Carvalho et al. 2017]. These findings support the hypothesis
that both adaptive memory (T-cell responses) and innate immune genes are in the dengue
infection disease outcome.

There are a considerable amount of research related to dengue using com-
putational systems[Ali et al. 2017, Muthusamy et al. 2016, Cordeiro et al. 2009]. In-
deed, a lot of researches involving Machine Learning (ML) to provide differential
diagnostic among DF and DHF has used a variety of techniques, such as decision
trees[Tanner et al. 2008] and Support Vector Machines[Gomes et al. 2010]. But almost
all of them presents limitations, such as use of clinical data and/or molecular phenotypes
that are variable in time and space and/or dependent of human interpretation.

2. Material and Methods
Here we propose a novel approach to dengue infection prediction using (ML) techniques,
namely SVM and ANN. This approach could be divided in the four stages described in
the subsections bellow: (2.1) Data Acquisition, (2.2) Data Preprocessing, (2.3) Feature
Selection, and (2.4) Patient Classification, the entire process is illustrated in Figure 1.

2.1. Data Acquisition
Patients with dengue-related symptoms were screened from three hospitals in the city
of Recife, Brazil. The study was reviewed and approved by the Ethics committee of
FIOCRUZ-PE: CEP/CPQAM no.11/11, C.A.A.E. 0009.0.095.000-11, IORG0001419. A
set of characteristics was investigated (the type of infection, age, sex, and genetic data -
322 loci polymorphisms) over 102 patients already positively diagnosed with DF (n=27)
or SD (n=75).
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Figure 1. Flowchart of SVM-ANN/genome dengue classifier. 2.1-Data acquisition
was performed by illumina genotyping of all dengue patients and then stored
into a database. 2.2- Data preprocessing was performed to encode and normal-
ize data into a suitable format for the ML step. 2.3- Feature selection was per-
formed by keeping the best SNP subset. 2.4- A MLP-ANN classifier was learned
for dengue prognosis based on the features previously selected.

2.2. Data Preprocessing
All data was encoded in values between -1 and 1. The genetic data, particularly, were en-
coded into indicators using a categorical scheme as homozygous dominant, heterozygous
or homozygous recessive, resulting in one feature per SNP. Age, as a numeric feature,
was normalized also into values between -1 and 1. Missing data was treated as a separate
category. Age, the only non-categorical feature, had no missing data.

2.3. Feature Selection
Due to the high dimensionality of the data (325 categorical features and up to 900
features after converted into indicator features) and aiming to avoid the curse of
dimensionality[Keogh and Mueen 2011], backward feature elimination using the SVM-
RFE algorithm [Guyon et al. 2002] with a linear classification kernel[Fan et al. 2008] was
performed.

The SVM-RFE model was implemented using the freely downloadable scikit-
learn library provided by Pedregosa et al.[Pedregosa et al. 2011]. The process was re-
peated for all datasets using 3-fold cross-validation[McLachlan et al. 2005] to choose the
SVM parameters γ and C from combinations of 0.01, 0.1, 1.0, 10.0 for each one. The
process selected the value 1.0 for both. The best subset comprises 13 loci found in 11
genes, as shown in Figure 1.



2.4. Patient Classification
After that, the defined subset was used to train a Multi-Layer Perceptron-Artificial Neural
Network (MLP-ANN). The MLP-ANN was implemented using the freely downloadable
ML python library[Pedregosa et al. 2011]. The rectified linear unit (ReLU) function was
used as the activation function and Limited-memory BFGS[Byrd et al. 1995] was used
for weight optimization. The initial value of the parameter α was 0.001 and the optimal
topology was found after a search in the bi-dimensional space (layers x neurons) using
stratified k-fold cross-validation with k=10. The best topology found for the previously
selected subset (SVM-RFE01) consisted of 3 hidden layers of 5 neurons per layer, illus-
trated in Figure 1 (in the MLP-ANN box).

3. Results
The Feature Selection (described in Section 2.3) found the best subset of features to clas-
sify a patient as DF ou SD. This subset comprises 13 SNPs found in 11 genes: CLEC4C,
IRF1, IFIT1, MYD88, TLR8, MX1, OAS2, VEPH1, IFNγ, OAS3, IRAK4. Many of
those genes have well-known influence in the immune system and the metabolic path-
ways of each one are subject of further studies in our research.

Those genes are used as input for a MLP-ANN. The accuracy estima-
tion for this subset of features were obtained by the bolstered resubstitution
method[Braga-Neto and Dougherty 2004a]. The variance of the bolstering ker-
nels were set using the “Naı̈ve Bayes” method[Jiang and Braga-Neto 2014].
Bolstered estimation is more accurate than cross-validation for small
datasets[Braga-Neto and Dougherty 2004b]. The estimated accuracy rates are reported
in Table 1. Also displayed, for comparison, are the stratified 10-fold cross-validated
accuracy rates obtained in the network selection step (as can be seen, these accuracy rates
are inflated by selection bias).

Table 1. Estimated statistics for our two best classifiers.
Subset Cross-Validation Bolstered Resubstitution

SVM-RFE01
96% 86.1% Accuracy

100% 98.64% Sensitivity
85% 51.85% Specificity

4. Conclusion
Here we applied ML techniques, namely SVM and ANN, to develop a classifier based on
genomic polymorphism to predict the risk of SD. In the Feature Selection step (see Fig-
ure 1) we have used a SVM to select the best subset to be used in this classification. This
subset consists in 13 SNPs located in 11 innate immune genes: CLEC4C, IRF1, IFIT1,
MYD88, TLR8, MX1, OAS2, VEPH1, IFNγ, OAS3, IRAK4. The role of these genes
in the immune mechanisms involved in the severe dengue phenotype are very promising,
though currently this research is in a preliminary phase. The use of genome data to predict
diseases has several advantages, especially due it can be done at any time and in a broad
human sample tissue, during early virus infection and/or before the infection itself.

The training dataset used for training the SVM/ANN were well characterized. It
was shaped by data from 13 SNPs to produce a classifier with accuracy level greater than



86%, with a sensitivity of 98,64%, and specificity around 51%. This type of diagnostic
tool is useful for patient triage, especially during disease outbreaks.

The method presented here provided very robust results for a prognosis (for
dengue severity) classifier, as demonstrated by the error assessment calculations. It is able
to select the optimal loci combination data and, then, to correctly (pre) classify the patient
that will develop severe phenotype based only in its genome background. Our method
can be easily replicate for other genetic based/genetic influenced diseases, helping to find
optimal loci sets to understand the molecular architecture of different pathologies, and
driving to potential therapeutics target genes.
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