Specific Substring Problem: an application in bioinformatics
Lucas B. Rocha'*, Said Sadique Adi', Eloi Araujo'

'FACOM - Universidade Federal do Mato Grosso do Sul (UFMS)
Campo Grande — MS — Brazil

lucas.lb.rochalgmail.com, {said, feloi}@facom.ufms.br

Abstract. Given two sets of sequences A and B, the Substring Specific problem
is to find all minimum substrings in A having distance at least k for each subse-
quence in B. This work addresses three new implementations for the Maaf} algo-
rithm when the Hamming distance is considered: a naive cubic-time algorithm
and two quadratic-time algorithms. We run tests to compare the running time
of these implementations and another recently described algorithm implemen-
tation that uses the edit distance. In addition, we conducted preliminary testing
on a large Tara Ocean database, looking for efficient and effective strategies for
finding unique sequences in a set of sequences comparing with the other.

1. Introduction

As a result of the advancement of DNA sequencing technologies, there are currently a
large number of sequenced genomes. Tara Expedition were journeys where an interna-
tional group of researchers sequenced the metagenome of over 35,000 different samples
from 210 different regions in the world, resulting in a total of 7.2 terabytes of genomic
data [Pesant et al. 2015, Bork et al. 2015]. This large amount of data needs now to be pro-
cessed in searching for meaningful biological information. In this context, an important
computational problem is determining markers, that are substrings from a set of sequences
that do not occur on sequences of other sets, that is, small substrings found only in the
former set. This is the Specific Segment Problem, proposed in [Gusfield 1997].

Other applications for determining markers include finding specific regions for
primer design in PCR technology [Montera and Nicoletti 2008], and specific organisms
in metagenomes that live in a given diseased tissue for the early diagnosis of can-
cer [Zitvogel et al. 2018, Shigefuku et al. 2017].

We formulate this problem in a simpler way, considering only two sets of se-
quences, that is, the problem of finding all the minimum substrings in a set of sequences
A that do not appear in another set B. The time required and the quality of the markers
found depend on how to define the distance function. Furthermore, since two equal se-
quences may have few differences due to some mutations or read errors, we consider only
a pair of sequences having a distance greater than or equal to a given integer threshold k.

Dobre [Dobre 2017] implemented two versions of an algorithm described by Gus-
field [Gusfield 1997] that uses edit distance, and spends time O(n?) in the worst case.
Maal} [Maall 2003] also described an algorithm that uses Hamming distance and spending
time O(n?). The Hamming distance seems to be, in addition to being easier to calculate,
a natural measure of similarity in many biological applications [Lanctot et al. 2003].

*This work is partially sponsored by UFMS and CAPES (scholarship 51001012028D6).

In this work, we describe three implementations of two different algorithms to
solve the considered problem using Hamming distance: first, one that implements a naive
strategy and, then, two versions of the Maal3’s algorithm that use two different data struc-
tures; we compare the time spent by each of the three implementations and by that from
Dobre’s work [Dobre 2017]. In addition, we perform tests with two different samples
obtained from the Tara project database, showing the time spent processing them.

This work is organized as follows: in Section 2, we describe the algorithms for the
problem considering edit and Hamming distance, and we present the time complexity of
each one. In Section 3, we show the practical results comparing our results to those from
Dobre [Dobre 2017]; moreover, for two samples of Tara project database, we show the
results regarding the time spent in simplified experiments using small subsets of two dif-
ferent samples. This was done to estimate the expected total spent time when comparing
whole samples. Finally, in Section 4, we discuss the results and a strategy that we intend
to adapt and follow in order to make this work feasible in practice.

2. Preliminaries

An alphabet Y. is a finite set of symbols. We denote a sequence s over > by s155...5¢
where each symbol s; € ¥. We say the length of s, denoted by |s|, is /. We say that the
sequence S;s;41...s;, with ¢ > 1 and j < |s| is a substring of s and we denote it by
sli, j]. A substring s[1, j] is called a prefix of s.

Given a distance function, we say that a string s is a minimal string that have
distance at least & to any string in a set of sequences A if the distance between s and any
substring of A is greater than or equal & and, for any prefix s’ of s with |s'| < |s], there is
a substring ¢ in A such that the distance between s’ and ¢ is smaller than k.

Problem 1 (Specific Substring Problem — SSP-D) Given two sets A and B of se-
quences such that |A| = M, |B| = N, find all the minimal substrings in A that have
distance at least k to any substring in B for some chosen distance function D.

The edit distance (ED) between two sequences is the minimum number of edit
operations insertions, deletions and substitutions required to transform one sequence into
another. In [Dobre 2017], Dobre implements an algorithm, called here KED, described
by Gusfield [Gusfield 1997] that solves the SSP-ED in O(M N - n?) time where n is the
length of the longest sequence in A U B.

Given two n-length sequences s and ¢, the Hamming distance (HD) dg(s,t) be-

tween s and t is defined as .

di(s,t) =Y |s: # til,
=1

where |s; # t;| is equals to 1 if s; # ¢;, and is equal to O otherwise.

The length of the smallest prefix of s and ¢ with k differences under the Hamming
distance is denoted by p(s, t, k) and it can be found by traversing s and ¢ at the same time
from left to right until we found k differences; if this number doesn’t exist, we define
p(s,t, k) = min{|s|, [t|} + 1. This process can be done in O(|s| + |¢|) time.

Gusfield [Gusfield 1997] describes a naive algorithm for a restricted version of
Problem SSP-HD. We implement and call it KHD1 algorithm. This restricted version of

Problem 1 considers |A| and | B| having just one sequence each, saying s and ¢. Then,
this naive algorithm has as input two sequences s and ¢, where |s| = m, |t| = n, and an
integer k, and computes r[i] = max;{p(s[i, m|,t[j,n], k)} for each i. Each r[i| can be
computed in O(mn) time. Thus, this algorithm is computed in O(m?n) time, i. e, O(n?)
if we consider n = m.

For the same restricted version, we also implemented a faster algorithm described
by Maal} [Maaf3 2003]. This algorithm is summarized in Algorithm 1 and the correspond-
ing implementation is called KHD?2.

Algorithm 1 [Maal} 2003]

I rli] <~ 0fori=1,....,m
2: forall (i,7) € {1,...,m} x {1,...,n},suchthati = lorj = 1do
3: max < min{m,i+n —j}

4 d<—p(5[l,m},t[j,n],k:— 1)

5: L+ 0

6: while : + L < mazx do

7 while d + i + L < max N Sqyivr = tarjyr dod < d +1
8 if mar > d+i+ Lthend < d+1

9

while TRU E do
10: ifrji+ L] <dthenr[i+ L] < d
11: L+ L+1
12: d<—d-1
13: ifi+L >maxr V s;_141 # tj_14+1 then break
14: return r

The number of pairs (¢, j) where i = lorj = lisn+m—1 = O(n+m). The al-
gorithm spends time O(min{n, m}) to compute k differences between the O(min{n, m})
pairs of sequences in each iteration. Thus, MaaB algorithm spends O((n + m)?) time, i.
e, O(n?) if we consider n = m.

The Longest Common Extension (LCE) of two strings s and ¢ is defined as the
length of the longest s and ¢ common prefix. Maall [Maal} 2003] claims that, since LCE
can be found in constant time by using a suffix tree, this structure can be used for executing
Line 7 in constant time speeding up the algorithm in practice, although the theoretical
complexity is still O(n?). We implemented the algorithm considering this improvement
and we call it KHD3.

3. Experiments and results

The experiments reported in Section 3.1 were performed in a server Intel Xeon(R) E5-
4650 2.7 GHZ, with 20 MB of cache memory, 95 GB of RAM memory and 8 Process-
ing cores and those reported in Section 3.2 were performed on a cluster with 40 nodes
with processors Xeon(R) CPU X3440@2.53GHz of 4 cores, 4 GB of RAM per node. In
Section 3.1, we compare the running time of KHD1, KHD2, KHD3 and KED that are
implemented in C++. The goal of the test is to find fast algorithms and good parameters
for using in the fastest strategies for solving SSP. In Section 3.2, we use the best strategies
to estimate the required time to compare two samples from Tara project sequences.

3.1. Tests with Homo sapiens sequences

In order to run the experiments with real data, two sets A and B including sequences ob-
tained from the Homo sapiens database were used [Dobre 2017]. Set A includes three se-
quences, namely hsarhgdig (4398 characters), hsankr10 (38530 characters) and hsa f f4
(90284 characters), and the set B includes 7 sequences, namely hsascl2 (4455 charac-
ters), hsankrd43 (5457 characters), hsalbg (8694 characters), hsalg10b (14972 charac-
ters), hsbad (16877 characters), hsascc2 (51655 characters) and hsasz1 (66302 charac-
ters). The running times obtained for each sequence in A when we set k& € {30, 300, 600}
is shown in Table 1. We noticed that KHD2 was the fastest implementation during the
tests. This behavior suggests that the use of the Hamming distance to solve SSP-HD is
probably a good choice in terms of time when using Tara sequence samples.

sequence in A \ implementation | KHD1 KHD2 KHD3 KED
hsarhgdig 00:01:10 | 00:00:36 | 00:02:07 | 00:00:40
hsankr10 00:07:20 | 00:02:10 | 00:04:00 | 00:04:40
hsaf f4 00:14:20 | 00:04:17 | 00:06:30 | 00:10:40

sequence in A \ implementation | KHDI KHD2 KHD3 KED
hsarhgdig 00:08:03 | 00:02:18 | 00:07:30 | 00:04:06
hsankr10 01:06:00 | 00:18:30 | 00:28:20 | 00:36:17
hsaf f4 02:20:00 | 00:28:44 | 00:35:00 | 01:26:00

sequence in A \ implementation | KHD1 KHD2 KHD3 KED
hsarhgdig 00:15:44 | 00:03:42 | 00:18:40 | 00:06:41
hsankr10 02:18:50 | 00:33:50 | 00:55:00 | 01:11:00
hsaf f4 03:32:06 | 01:09:06 | 02:01:00 | 02:33:01

Table 1. Average running time (hours:minutes:seconds) obtained with the tests for
sequences in A when they are compared to each sequence in B using k£ =
30,300 and 600 respectively.

3.2. Tests with Tara sequences

From now on, we will use KHD?2 (because it has the best time for Hamming distance)
and KED in the tests. To run the tests with Tara sequences, two samples were used:
ERR599040 and ERR59914. Each sample has thousands of sequences. In order to esti-
mate the time we would spend for comparing the two samples, we did some tests con-
sidering only 1, 10 and 100 sequences from ERR599040 (set A) and 2 million sequences
from ERR599148 (set B).

Number of sequences considered in ERR599040 | KHD2 KED
1 00:10:38 | 00:10:03
10 01:34:00 | 01:35:32
100 12:40:00 | 12:43:00

Table 2. Running time (hours:minutes:seconds) for run sequences in ERR599040 com-
pared to 2,000,000 of sequences in ERR599148, with k£ = 30.

The running times obtained for the two restricted samples of the Tara project
database are shown on Table 2. We noticed that KHD2 and KED programs have sim-
ilar run-times. Moreover, we estimate that it would take a long time to run the entire

sample set. This behavior justifies the reduction of sample sequences with some tool. It
will be better discussed in Section 4.

4. Discussion, perspectives and conclusions

This work addresses the problem of specific strings (SSP). Two versions for previously
described algorithms for the SSP-HD problem are showed with the second one presenting
two variations. We implemented this versions and carried out tests with real Homo sapiens
sequences data. We also performed a comparison with SSP-ED algorithm implemented
by Dobre [Dobre 2017]. According to Table 1, the KHD2 implementation has the better
running time, suggesting that Hamming distance is indeed a promising measure for the
considered problem at least concerning time consumption.

However, as well as it can be observed in Table 2, KHD2 and KED show a slight
difference in processing time, but both implementations are not fast enough for our main
problem. Since we spend a reasonable time to compare a few sequences in ERR599040
with only thousands of sequences in ERR599148, we estimate that it would take hundreds
of years to compare all the sequences. In order to overcome this difficult, we need to
have a way to reduce the amount of sequences to be processed without giving up our
central target that is to find sequences in one set that is not in another. Thus, we plan
including a clustering preprocessing step with the CD-HIT tool [Li and Godzik 2006],
more specifically the CD-HIT-2D, which is a tool that compares two protein databases and
identifies similar sequences considering certain threshold. The FASTA file of non-similar
sequences after clustering seems very interesting because it has unique sequences that can
be tested using our algorithm. All other sequences can be discarded in this process. The
CD-HIT used is [Fu et al. 2012].

Qty. of sequences Time Time (8 CPUs) | Clustered | ERR599148 Reduction
10000 00:01:06 00:00:12 3859 38.59%
20000 00:03:11 00:00:44 9957 49.78%
30000 00:08:20 00:01:32 17315 57.71%
40000 00:12:00 00:02:34 25465 63.66%
Qty. of sequences | Time | Time (8 CPUs) | Clustered | ERR599148 Reduction
10000 00:01:19 00:00:10 6360 63.60%
20000 00:04:23 00:00:33 15343 76.72%
30000 00:08:44 00:01:06 25060 85.54%
40000 00:14:16 00:01:48 35269 88.17%

Table 3. CD-HIT-2D Running time (hours:minutes:seconds) to 60% and 58% of simi-
larity, with the same amount of sequences for ERR599040 and ERR599148.

Tests with TARA datasets are used to evaluate the behavior of the two sequential
algorithms when it needs to handle a very large amount of data. It can be observed in
Table 2 that both algorithms are not fast enough. The runtimes and percentage reductions
of the number of sequences in ERR599148 are shown in Table 3. We noticed a signif-
icant reduction with 58% of the similarity that would lead us to conclude it is possible
to find a good clustering, focusing on reducing the amount of sequences. In addition,
we estimate that it takes about one week to cluster the dataset A and B with around 120

million of sequences. In the worst case, if |A| = N, |B| = M and KDH2 = O(n?), it
spends O(N M - n?) for running all sequences. We plan to investigate new ways to cluster
sequences to get smaller sets of sequences based on the CD-HIT. In addition, we want
to search other tools or techniques for clustering that are faster than CD-HIT. Further-
more, since reducing the sample may not be enough, it is always necessary to improve the
KHD? run-time. Moreano et. al [Feuser and Moreano 2018] describe a parallel approach
for the KED algorithm achieving good speedups. Hence, we are considering a parallel
computing approach for KHD?2 algorithm.

References

Bork, P., Bowler, C., de Vargas, C., Gorsky, G., Karsenti, E., and Wincker, P. (2015). Tara
oceans studies plankton at planetary scale. Science, 348(6237):873-873.

Dobre, J. A. (2017). O problema da selecdo de segmentos especificos: algoritmos e
aplicagdes. Universidade Federal de Mato Grosso do Sul. Master’s thesis.

Feuser, L. and Moreano, N. (2018). Parallel solutions to the k-difference primer problem.
In International Conference on Computational Science, pages 506—523. Springer.

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). Cd-hit: accelerated for clustering the
next-generation sequencing data. Bioinformatics, 28(23):3150-3152.

Gusfield, D. (1997). Algorithms on strings, trees and sequences: Computer science and
computational biology, 1st editio. New York, United States, page 534.

Lanctot, J. K., Li, M., Ma, B., Wang, S., and Zhang, L. (2003). Distinguishing string
selection problems. Information and Computation, 185(1):41-55.

Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658-1659.

MaaB, M. G. (2003). A fast algorithm for the inexact characteristic string problem. Tech-
nical Report TUM-10312, Fakultit fiir Informatik, TU Miinchen.

Montera, L. and Nicoletti, M. C. (2008). The PCR primer design as a metaheuristic search
process. In International Conference on Artificial Intelligence and Soft Computing,
pages 963-973. Springer.

Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., Iudicone,
D., Karsenti, E., Speich, S., Troublé, R., et al. (2015). Open science resources for the
discovery and analysis of tara oceans data. Scientific data, 2:150023.

Shigefuku, R., Watanabe, T., Kanno, Y., Ikeda, H., Nakano, H., Hattori, N., Matsunaga,
K., Matsumoto, N., Kanno, S.-i., Nosho, K., et al. (2017). Fusobacterium nuclea-
tum detected simultaneously in a pyogenic liver abscess and advanced sigmoid colon
cancer. Anaerobe, 48:144-146.

Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G., and Gajewski, T. F. (2018). The micro-
biome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science,
359(6382):1366-1370.

