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Abstract. Optimal liquidation consists of selling large blocks of single stocks
within given time frames optimally with respect to specified risk-sensitive ob-
jectives. In this paper, we extend the Almgren-Chriss model for the liquidation
process to a more generic and realistic setting and present a differentiable plan-
ning algorithm to solve it. We evaluate the performance of the proposed method
through experiments, demonstrating the potential of differentiable planning for
optimal liquidation in realistic scenarios.
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1. Introduction
A decision problem that financial institutions often face concerns selling large blocks of
single stocks. If the sale is executed too rapidly, it may move the market in an adverse
direction and thus decrease the total amount received, while, on the other hand, if it’s exe-
cuted too slowly, there’s the risk of the stock dropping in price before it’s completed. This
can be viewed as a sequential decision making problem for which the financial institution
must specify a liquidation strategy that adheres to its risk tolerance while maximizing the
sale proceeds.

On a high-level basis, automated planning refers to the subfield of AI that is con-
cerned with sequential decision making under descriptive models of systems or processes.
One particular subset of its methods that has been attracting increasing interest recently
is differentiable planning [Wu et al. 2017, Bueno et al. 2019], mostly due to its applica-
bility to continuous state-action spaces and wide success of differentiable models in other
domains, such as computer vision and natural language processing [Bueno 2021].

The main contribution of this paper is demonstrating the potential of differ-
entiable planning algorithms for optimal liquidation in realistic scenarios. Specifi-
cally, we extend the well-known Almgren-Chriss model for the liquidation process
[Almgren and Chriss 2001] to a more generic and realistic setting where the stock price
process follows a geometric Brownian motion with constant drift and local volatility
[Dupire et al. 1994, Derman and Kani 1994]. We then show how this model can be nat-
urally viewed as an exogenous Markov decision process (X-MDP) [Bueno 2021] and
propose a differentiable planning algorithm to solve it. We conclude by analyzing the
performance of the proposed method through experimental results.

The remainder of this paper is structured as follows. Section 2 describes the opti-
mal liquidation problem and formally defines the model used throughout the paper. Sec-
tion 3 briefly reviews X-MDPs and how the optimal liquidation problem can be framed



as one, finalizing by presenting the differentiable planning algorithm proposed. Section 4
presents the experiments performed to evaluate the performance of the proposed method.
Finally, Section 5 concludes the paper and points to future research directions.

2. Optimal Liquidation
In brief terms, the optimal liquidation problem consists of selling a (presumably) large
block of a single stock within a given time frame following a strategy that is optimal
with respect to our risk preferences, balancing between moving the market in an adverse
direction (if the trade is executed too rapidly) and the market risk we’re exposed to by
holding the shares for too long.

In this section, we formally define this problem and present the components used
throughout the rest of the paper to model it. Our specification is largely based on the
Almgren-Chriss model [Almgren and Chriss 2001] and essentially extends it to a more
generic and realistic setting at the cost of losing some of their analytical results.

2.1. Trading Strategy
Defining our scenario precisely, suppose we must liquidate x0 ∈ R≥0 shares of a single
stock by time T ∈ R>0. Divide this time frame into N intervals of length τ = T

N
, and let,

for k = 0, . . . , N , the discrete times be tk = kτ .

Our objective is to specify a strategy x = (x1, x2, . . . , xN), where xk ∈ R≥0

determines how many shares to hold at time tk. A few constraints naturally follow: we
must not buy additional shares, implying xj ≥ xk whenever j ≤ k; since we must
liquidate the entire block of shares, we have that xN = 0.

As we shall see in Section 3, we’ll represent this strategy by a parametrized policy
whose parameters will be adjusted via differentiable planning. Having said that, you can
consider it, for the purposes of this section, as a simple list of numbers.

2.2. Market Impacts
Following the Almgren-Chriss model [Almgren and Chriss 2001], our liquidation strat-
egy impacts the stock prices both temporarily and permanently. Temporary impacts cap-
ture one-time transaction costs associated with single trades (e.g., bid-ask spread and
fees), while permanent impacts refers to shifts in the equilibrium price of the stock caused
by our trading.

Both types of impact are modeled by generic functions of the stock price and the
number of shares sold on a given time period, which we constrain solely through the
requirement for them to be differentiable in order for our problem to be amenable to the
differentiable planning approach described in Section 3.

Specifically, if nk = xk−1 − xk denotes the number of shares sold between times
tk−1 and tk, let g : R2

≥0 → R≥0 and h : R2
≥0 → R≥0 represent, respectively, the permanent

and temporary impacts of selling those shares. A simple specification for these impacts,
for instance, are the linear models g(Sk−1, nk) = γnk/τ and h(Sk−1, nk) = ϵ + ηnk/τ
parametrized by γ, ϵ and η, as presented on [Almgren and Chriss 2001].

As we’ll see in the rest of this section, these impacts are factored into our model
in different ways. Permanent impacts affect the stock price evolution through time, while



temporary impacts affect only the effective price received for the sale of shares on specific
time steps.

2.3. Stock Price Evolution

In contrast to the Almgren-Chriss model, which models the stock price process as a
discrete-time arithmetic Brownian motion, we opt instead for a geometric Brownian mo-
tion. While it’s well known that the latter is a more accurate (and the most widely used)
model for stock prices evolution [Hull 2006], the former approximates it quite well for
short liquidation periods T [Almgren and Chriss 2001].

For an initial stock price S0 ∈ R≥0, a drift curve µ : (0, T ]→ R and local volatility
σ : (0, T ] × R≥0 → R≥0, let µk = µ(tk) and σk = σ(tk, Sk−1). Then, for k = 1, . . . , N ,
the stock price evolution is given by

Sk = Sk−1e
(µk−σ2

k/2)τ+σk
√
τξk − g(Sk−1, nk) ,

where ξk are i.i.d. distributed according to a standard normal distribution and g(Sk−1, nk)
is the permanent market impact of selling nk shares between times tk−1 and tk.

2.4. Capture and Cost of Trading

Between times tk−1 and tk, we sell nk shares of the stock and receive nkS̃k in cash, where
S̃k = Sk−1 − h(Sk−1, nk) is the effective price received per shares, given by the stock
price at the start of the period discounted for the temporary impact of trading.

The capture of the strategy is defined as the present value of the cash payments
received for sale of the shares. Let r : (0, T ]→ R be a discount curve and rk = r(tk), for
k = 1, . . . , N , then the capture of the strategy is given by

∑N
k=1 e

−rknkS̃k.

Finally, the total cost of trading of the strategy is defined as the difference be-
tween the value of our position at the start of the liquidation period and the capture of the
strategy, being given by C = x0S0 −

∑N
k=1 e

−rknkS̃k.

We can now restate our goal more precisely as choosing a strategy that minimizes
the expected cost of trading E[C] such that the market risk we’re exposed to, which we’ll
quantify as its standard deviation

√
V[C], is in line with our risk aversion. Specifically,

we aim to minimize the loss given by L = E[C] + λ
√
V[C], where λ ∈ R≥0 represents

our intolerance to risk—the greater it is, the more risk-averse we are.

3. Differentiable Planning
Differentiable planning refers to a class of automated planning methods to solve sequen-
tial decision making problems in continuous state-action spaces via gradient-based opti-
mization. The main motivation behind it stems from the difficulty that traditional search-
based planning approaches have to handle problems with arbitrary non-linear dynamics
and/or cost functions in continuous spaces [Bueno 2021].

In this section, we’ll start by briefly describing exogenous Markov decision pro-
cesses (X-MDPs) and how the optimal liquidation problem, as it was previously pre-
sented, naturally fits into one. To conclude it, we’ll present the proposed differentiable
planning algorithm to obtain a strategy for the optimal planning X-MDP.



3.1. X-MDP and Optimal Liquidation

Similarly to [Bueno 2021], we define an X-MDP by a tuple (Y ,A, ξ, f, c, y0), where Y ⊂
Rn is the state space,A ⊂ Rm is the action space, ξ is a discrete-time Ξ-valued stochastic
process, for Ξ ⊂ Rp, called the noise process, f : Y × A × Ξ → Y is the transition
function, c : Y ×A → R is the cost function and y0 ∈ Y is the start state.

Essentially, it’s a Markov decision process that explicitly decouples its stochastic
and deterministic components, which allows us, for instance, to compute gradients of its
costs with respect to actions—and thus be able to optimize the actions with respect to
costs via gradient-based optimization methods. This property is evident when it’s viewed
as a stochastic computational graph, shown in Figure 1, where we can see there’re no
paths from actions to costs going through stochastic variables [Bueno 2021].

Figure 1. Stochastic computational graph of an X-MDP.

We can formulate the optimal liquidation problem, as it was defined in Section 2,
as an X-MDP in a straightforward manner. Specifically, for a given time step k, let

• The state be given by the tuple (Sk, xk, k), such that the initial state is (S0, x0, 0);
• The cost be given by −e−rknkS̃k;
• The action be given by a policy πθ : Y → A parametrized by θ ∈ Rq, such that
xk = πθ(Sk−1, xk−1, k − 1);

• The noise random variable be ξk as previously defined.

The definitions for the state space, the action space and the other X-MDP compo-
nents follow directly from the above. We illustrate it graphically in Figure 2, similarly to
the generic one presented in Figure 1. Note how there’re no paths from the cost of trad-
ing C and the policy parameters θ, indicating that we can differentiate any differentiable
function of C that we can compute with respect to θ.

3.2. Algorithm

As mentioned in the end of Section 2, our goal is to minimize, with respect to θ, the
loss L = E[C] + λ

√
V[C] for a particular value of λ ∈ R≥0. In order to do that, using

gradient-based optimizers, we must of course be able to compute (or approximate) its



Figure 2. Stochastic computational graph of the optimal liquidation X-MDP.

gradient ∇θL. We can’t compute neither the loss L nor its gradients ∇θL analytically
though, but we can’t approximate the loss L by

L̂ = C̄ + λ

√√√√ 1

M

M∑
m=1

(Cm − C̄)2 ,

where C̄ = 1
M

∑M
m=1Cm and Cm, for m = 1, . . . ,M , are samples from forward passes

through the optimal liquidation X-MDP for a fixed θ.

We’ll then approximate the gradient of the loss ∇θL by the gradient of the ap-
proximate loss ∇θL̂. Note, however, that this isn’t an unbiased estimator of ∇θL, so
that the usual convergence guarantees of stochastic optimization methods don’t apply
[Robbins and Monro 1951]. On the other hand, we provide evidence through our ex-
perimental results in Section 4 that it may be a sufficiently good approximation for this
particular problem.

The exact process described so far to adjust our parametrized policy πθ is pre-
sented in pseudocode in Algorithm 1. It’s essentially the same algorithm proposed in
[Bueno et al. 2019], the only difference being in the gradient estimator used—as our loss
isn’t simply an expected value. It can be implemented easily using any modern numerical
framework that implements reverse mode automatic differentiation, some of which work
on computational graphs directly, such as TensorFlow [Abadi et al. 2015].

Briefly going through its steps, it starts by initializing the policy parameters θ to,
in principle, any arbitrary values (although this of course influences the algorithm conver-
gence). Next, for a given number of iterations J , it samples M paths from forward passes



Algorithm 1: Differentiable Planning for Optimal Liquidation
Input : number of iterations J and other values as previously defined

(e.g., X-MDP and loss L̂)
Output: adjusted parameters θ

Initialize parameters θ
for j = 1 to J do

for m = 1 to M do
Sample noise process ξ = (ξ1, ξ2, . . . , ξN )
Compute m-th cost of trading Cm for θ and ξ

end
Compute approximate loss L̂ and its gradient∇θL̂ with respect to θ

Update parameters θ ← optimizer(θ,∇θL̂)

end

return θ

through the optimal liquidation X-MDP, computes the approximate loss L̂ and its gradi-
ent∇θL̂ with respect to θ, updating θ at the end using any gradient-based optimizer—for
example, Adam [Kingma and Ba 2015].

4. Experiments
In this section, we present and discuss the experiments performed to validate the proposed
method. We start by briefly going through the setup used for the experiments, consisting
of the specific liquidation process and policy parametrization and implementation, fol-
lowed by the experiments themselves.

4.1. Setup
For the optimal liquidation problem, we’ll take almost all parameters to have the same
values as in [Almgren and Chriss 2001], as summarized in Table 1. For instance, we’ll
assume a constant drift µk = µ and volatility σk = σ for the stock price diffusion, constant
discount rate rk = r and linear temporary h(Sk−1, nk) = ϵ + ηnk/τ and permanent
impacts g(Sk−1, nk) = γnk/τ of trading, parametrized by ϵ, η and γ. The liquidation
period T varies between experiments.

The policy πθ is implemented as standard multi-layer perceptron (MLP)
[Goodfellow et al. 2016] with 10 hidden units, whose last layer outputs the proportion
of the current holding xk to hold next, being multiplied by the current holding xk to ar-
rive at xk+1. Its parameters θ are adjusted using Algorithm 1 with M = 4 × 104 paths,
J = 3×104 iterations and the Adam optimizer. The experiments were implemented using
JAX, a Python library for numeric computation that implements reverse mode automatic
differentiation [Bradbury et al. 2018].

4.2. Short Liquidation Periods
For short liquidation periods, the Almgren-Chriss model approximates ours very closely.
In that sense, under short-term horizons, we can consider the Almgren-Chriss optimal



Table 1. Optimal liquidation parameter values

Parameter Value
S0 50 $
x0 106 shares
τ 1 day
µ 10% / year
σ 30% / year1/2

r 8% / year
ϵ 0.0625 $
η 2.5× 10−6 $/(shares/day)
γ 2.5× 10−7 $/(shares/day)

analytical solution to be approximately optimal for our model as well.

We can thus compare our proposed method’s performance against this optimal
solution to analyze how well the former converges towards the latter. This comparison
is shown graphically in Figure 3, where the expected cost of trading and its standard
deviation are plotted for different policies and a liquidation time T of 5 days.
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Figure 3. Expected values and standard deviations of the cost of trading for
different policies and liquidation time T of 5 days.

The “Almgren-Chriss” dashed curve shows these values for the Almgren-Chriss
analytical solution obtained by varying λ from 0 to ∞. This curve is referred to as the
optimal frontier, as any given liquidation strategy with a certain expected cost of trading
must have a standard deviation of cost of trading greater than or equal to the value for the
same expected cost of trading along this curve.

The “Min Variance” and “Const Rate” bars refer to the minimum variance and



constant rate policies, respectively. The former consists of selling all shares as soon as
possible (i.e., xk = 0, for k ≥ 1) and is the most risk-averse strategy possible, for which√

V[C] = 0. The latter, on the other extreme, consists of selling a constant amount of
shares at each time step, which minimizes the market impacts of selling and can be seen
as the most risk-neutral strategy possible.

Finally, the “Diff Planning” markers refer to policies adjusted via the proposed
differentiable planning algorithm for different values of λ—from left to right, 4, 3, 2,
1 and 0.3. Note that the differentiable planning policies achieve the optimal trade-off,
for a each level of risk-aversion λ, between minimizing the expected value and standard
deviation of the cost of trading C, as they lie on the optimal frontier.

4.3. Long Liquidation Periods

For long liquidation periods, the difference between the Almgren-Chriss model and ours
makes itself more evident. For instance, under this setting, we would expect the Almgren-
Chriss analytical strategy to be sub-optimal, in the sense of there existing less risky strate-
gies for a given expected cost of trading.
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Figure 4. Expected values and standard deviations of the cost of trading for
different policies and liquidation time T of 60 days.

This is exactly what is shown in Figure 4. As in Figure 3, it shows the expected
cost of trading and its standard deviation for the Almgren-Chriss analytical policies and
the proposed differentiable planning policies, but now considering a liquidation time T of
60 days. Note that the Almgren-Chriss analytical policies are clearly sub-optimal as the
differentiable planning policies have smaller standard deviations of cost of trading for the
same expected cost of trading values.



5. Conclusion

In this work, we have extended the Almgren-Chriss model to a more generic and realistic
setting, where the stock price process follows a geometric Brownian motion with deter-
ministic drift and local volatility, and shown how it naturally fits into an X-MDP. Next,
and most importantly, we’ve proposed a differentiable planning algorithm that allows us
to solve this optimal planning X-MDP approximately, requiring only the differentiability
of some of its components to be amenable to gradient-based optimization methods.

We’ve shown through experiments that, for short-terms liquidation horizons, the
proposed differentiable planning strategies lie in the optimal frontier defined by the ana-
lytical solution to the Almgren-Chriss model, which approximates well our model under
this setting. For long-term horizons, for which the Almgren-Chriss analytical solution is
sub-optimal as its model is no longer a good approximation of ours, we’ve shown that our
differentiable planning strategy indeed overperforms it.

For future work, a straightforward potential improvement to our differentiable
planning algorithm would be developing a guaranteedly unbiased gradient estimator for
it and analyzing how it compares to ours, especially for more complex scenarios than the
ones analyzed here. One alternative, but related, direction to explore is using stochas-
tic compositional gradient descent optimizers with our method, which deal directly with
losses such as ours [Wang et al. 2017].
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