
POE: A General Portfolio Optimization Environment for
FinRL

Caio de Souza Barbosa Costa1, Anna Helena Reali Costa1

1Escola Politécnica
Universidade de São Paulo (USP) – São Paulo, SP – Brazil

{caio326,anna.reali}@usp.br

Abstract. Portfolio optimization is a common task in financial markets in which
a manager rebalances the invested assets in the portfolio periodically aiming
to make a profit, minimize losses and maximize long-term returns. Due to their
great adaptability, Reinforcement Learning (RL) techniques are considered con-
venient for this task but, despite RL’s great results, there is a lack of standardiza-
tion related to simulation environments. In this paper, we present an RL environ-
ment for the portfolio optimization problem based on state-of-the-art mathemat-
ical formulations. The environment aims to be easy-to-use, very customizable,
and have integrations with modern RL frameworks.
Keywords: Portfolio optimization. Reinforcement learning. Simulation environ-
ment. Quantitative finance.

1. Introduction
In order to deal with market volatility, investors constantly apply strategies to reduce
losses, increase gains and maximize their long-term returns. For this, it is oppor-
tune for these strategies to be able to predict the future price of assets so that buy-
ing and selling actions are carried out properly. Therefore, machine learning tech-
niques have been increasingly applied to financial markets, achieving excellent results
[Khadjeh Nassirtoussi et al. 2014, Hu et al. 2015, Henrique et al. 2019].

One of the most prominent approaches is the use of reinforcement learning (RL)
algorithms, as the main objective of these algorithms is to maximize the long-term return
of a profit-related reward function, just like human investors. Furthermore, RL is able to
handle brokerage fees (something supervised machine learning approaches have a hard
time dealing with [Deng et al. 2017]), is very adaptable to unusual situations and can
achieve effective behaviors even in the early stages of learning [Sutton and Barto 2018].
However, to effectively use RL, it is necessary to model the dynamics of interactions
between the agent and a task-specific environment. In the financial market context, the
task of an agent is to trade assets from time to time and make a profit, therefore, the task-
specific environment must be able to simulate the market behavior over time, perform the
agent’s buying and selling actions and calculate the resulting gains and losses.

Due to the need to develop a task-specific environment to train an agent, one
of the major problems in RL research is the lack of standardization in environments,
tasks and interactions, which hinders the ability to make comparisons between the per-
formances of different solutions. To deal with that, frameworks like OpenAI Gym
[Brockman et al. 2016] and FinRL [Liu et al. 2022b] aim to provide a number of envi-
ronments to be used by researchers as common benchmarks, the latter one focused on

financial markets applications. However, despite having quite a success and wide adop-
tion by the scientific community, none of those frameworks provide an easy-to-use envi-
ronment compatible with the modern portfolio optimization agents, especially after the
introduction of convolutional architectures like in [Jiang et al. 2017], which make use of
multiple price time series as state-space.

That said, the objective of this paper is to fill that gap by introducing PortfolioOp-
timizationEnv (POE), an open-source portfolio optimization environment whose state rep-
resentation is compatible with state-of-the-art approaches. Developed as part of FinRL,
this environment benefits from the features of that framework, follows the OpenAI Gym’s
environment standards, and is compatible with modern repositories of RL algorithms such
as stable baselines 3 [Raffin et al. 2021]. Finally, the environment is also able to calcu-
late several performance metrics to be used to compare different solutions to the portfolio
optimization problem.

This paper is organized as follows: Section 2 formalizes the portfolio optimiza-
tion task and introduces the main metrics and hypotheses, Section 3 introduces the RL
approach to solve the task, Section 4 describes the proposed portfolio optimization envi-
ronment, its guidelines and how it was implemented and, finally, Section 5 concludes the
paper.

2. Portfolio optimization

Portfolio optimization is a task in which a trading system is responsible for periodically
defining the allocation of resources in a portfolio. The system starts the task with a specific
amount of cash and, seeking to make a profit, it constantly rebalances all the investments
after analyzing the market for an interval of time: the small periods of time between
market analysis intervals in which the system is able to rebalance the portfolio are called
reallocation periods (as shown in figure 1). An optimal portfolio optimization framework
must be able to act in these reallocation periods to increase profits and mitigate losses.

2.1. Mathematical definition

Given a portfolio with n assets, we can define, at each time step, a vector called weights
vector (Wt) that contains the percentage (or weights) of all the assets in the portfolio and
of the remaining capital. Therefore, the size of Wt is |Wt| = n+ 1 and the sum of their
elements must be 1. Mathematically speaking, being Wt(i) the i-th element of Wt, the
weights vector must be constrained by

n∑
i=0

Wt(i) = 1. (1)

At each time step, we can also define a price vector Pt with the following form
[1,Pt(1),Pt(2), ...,Pt(n)]. The first element of the price vector is always 1 because it’s
related to the remaining capital and it is invariable. The first element can also be seen as
a reference price: all other prices are calculated in relation to this one.

By knowing the last value of the portfolio (Vt−1), the current price vector (Pt),
the last price vector (Pt−1) and the last weights vector (Wt−1), it’s possible to calculate

the current portfolio value Vt by using the recursive formula:

Vt = Vt−1

(
Wt−1 · (Pt ⊘Pt−1)

)
, (2)

where · is the dot product of two vectors, and ⊘ is the element-wise division. Note that
this method assumes that every asset will have positive prices since a division by zero in
the element-wise operation will cause errors.

The value of the portfolio has changed from Vt−1 to Vt because the prices of the
assets have changed, but that change also affects the weights vector, which, in the end of
the last time-step, assumes a different value given by

W f
t−1 =

(Pt ⊘Pt−1)⊙Wt−1

(Pt ⊘Pt−1) ·Wt−1

, (3)

where ⊙ is the element-wise multiplication. The intuition of W f
t−1 is that it represents the

weights matrix at the final moment of time step t− 1, information that is necessary when
trading fees are imposed to the system (section 2.2). Figure 1 represents the portfolio
optimization process over time, note that Wt is determined during the reallocation period.

Figure 1. Diagram representing the portfolio optimization process over time.

It’s common to model the profit at time-step t as a logarithmic rate of return (rt):

rt = ln
(Vt

Vt−1

)
. (4)

This way, the final portfolio value can be expressed as:

VT+1 = V0 exp
(T+1∑

t=1

rt

)
, (5)

where T is the last time step in which a portfolio allocation occurs, and rT+1 is the profit
of this final allocation.

The portfolio optimization problem consists of finding the optimal sequence of
portfolio weights vector ([W0,W1, ...,WT]) that maximizes the final portfolio value
VT+1.

2.2. Trading fees

The formulation in section 2.1 does not consider brokerage fees, which are usually
charged when assets are bought or sold. In the real world, though, trading fees are a
common practice and can greatly influence the system’s performance since the cost of
trading increases as the number of orders increases. Usually, in many brokers, a trading
fee is given by a percentage of the overall value of the transaction, and during the port-
folio reallocation period, the portfolio value decreases due to costs related to it. Because
of that, it is necessary to differentiate the portfolio value at the end of a time step (V f

t−1)
from the portfolio value at the beginning of the next step (Vt) (after fees are applied).

There are two ways of modeling brokerage fees in portfolio optimization prob-
lems:

Weights vector modifier: In this approach, at the beginning of time step t, the agent
defines an action in the form of a weights vector Wt. The environment then calcu-
lates the trading fees by summing the absolute variation of cash invested in each
asset and applying the percentage fee. The brokerage fee is, then, taken from
the remaining cash, modifying the weights vector Wt to a new one W ′

t and also
changing the portfolio value from V f

t−1 to Vt. This method has one main excep-
tion: if the trading fee is bigger than the remaining cash, the portfolio reallocation
step can not be performed and the last vector W f

t−1 is considered as W ′
t . Figure 2

illustrates how the weights vector modifier is applied to the trading process.

Figure 2. Portfolio optimization process with weights vector modifier trading fee.

Transaction remainder factor: Another way to simulate transaction costs is to define a
remainder factor µt that modifies the portfolio value during the reallocation:

Vt = µtV
f
t−1. (6)

µt has a different value depending on the time step since each reallocation may
have a different number of trading orders performed. The formula to calculate
µt and its demonstration is available in [Jiang et al. 2017]. Figure 3 shows the
influence of the transaction remainder factor on the portfolio value.

Since the transaction remainder factor model does not suffer with the exception
described in the weights vector modifier model, it is preferred the majority of the time.

Figure 3. Portfolio optimization process with transaction remainder factor trading
fee.

2.3. Performance metrics

In order to compare different portfolio optimization approaches, it is important to apply
some performance metrics. Like in [Jiang et al. 2017], the metrics adopted here are fi-
nal accumulative portfolio value (fAPV), maximum drawdown (MDD), and Sharpe ratio
(SR), described below.

Final accumulative portfolio value (fAPV): This performance metric is responsible for
calculating the profit generated by the portfolio during a specific time interval. The
bigger the fAPV, the bigger the profit generated by the implemented approach.
Being V0 the initial portfolio value and VT+1 the final portfolio value, it is possible
to calculate the final accumulative portfolio value by doing:

fAPV =
VT+1

V0

. (7)

Maximum DrawDown (MDD): The fAPV is a great measure of profit but it ignores
the risk necessary to achieve that profit. One of the ways to model the risk is
to analyze the maximum drawdown of a portfolio value time series. The maxi-
mum drawdown is defined as the biggest downward movement of that time series
[Magdon-Ismail et al. 2004]:

MDD = max

(
max
t<τ

Vt − Vτ

Vt

)
. (8)

Sharpe Ratio (SR): Another risk-related metric is the Sharpe Ratio [Sharpe 1994]. This
metric is a risk-adjusted mean return, defined as the average of the risk-free return
by its deviation:

SR =
Et[ρt − ρF]√
vart[ρt − ρF]

, (9)

where ρt = Vt/Vt−1 is the rate of return, ρF is the rate of return of risk-free asset
(which is usually assumed to be zero) and the denominator is basically a standard
deviation of the numerator.

Considering these metrics, a good portfolio should have the highest possible
fAPV and SR, as these are measures of return. It should also have a lower MDD
to ensure it is as risk-free as possible.

2.4. Common hypotheses

In many portfolio optimization solutions, especially those based on RL, it is necessary
for the system to pretend to be back in time at a point in the history of the market and
experience a simulation of the passage of time [Jiang et al. 2017]. To achieve this, two
hypotheses are commonly imposed:

No slippage: The market is assumed to have considerably high liquidity so orders placed
are immediately completed at the last price.

No market impact: The trading actions done by the system don’t impact the market dy-
namics because it’s assumed that the amount of assets traded is small.

These hypotheses simplify the task of portfolio optimization, as in the real world
a large amount of trades can affect market prices, and there is also no guarantee that a
trader will be able to complete an order without delay.

3. Reinforcement learning in the portfolio optimization problem
A way to solve the portfolio optimization problem is to train an RL agent. In this ap-
proach, an agent learns a policy (π) by interacting directly with an environment. At each
time step, the environment is responsible for providing observations (Ot) to the agent that
defines a state (St) of the system, which is used by the agent to decide an action (At) to
be performed. After an action is performed, the environment also provides the agent a
reward (Rt) that is used by the agent to know if the action performed was well chosen.
The goal of the RL agent is to define an actuation policy that maximizes the expected sum
of received rewards. If the observations match the states of the system, i.e. Ot = St, then
the policy can be defined as π : S → A. Figure 4 represents a training cycle of an RL
agent interacting with the environment.

Observation (Ot)
Reward (Rt)

Action (At)Environment Agent

Figure 4. Reinforcement learning interacting cycle.

However, to be properly used in portfolio optimization tasks, the agent must be
able to use complex state spaces, as a portfolio is composed of multiple assets and each
asset has its own price series. In their book, [Sutton and Barto 2018] introduce ways
to deal with complex and continuous state space by using function approximations like
neural networks, which achieve formidable results in many tasks. Therefore, the most
convenient algorithms are Deep Reinforcement Learning (DRL) ones.

Before modeling the state space, action space, and reward function, it is important
to explain the assumptions made by the RL approach described in this section. To deal
with the hypotheses introduced in section 2.4, RL is modeled as a contextual bandit prob-
lem instead of a full RL one. The main difference is that in (full) RL, an action At in state
St not only affects the reward Rt that the agent will get but will also affect the next state
St+1 the agent will end up in, while, in contextual bandits, an action At in state St only

Action

State
Reward

Action

State
Reward

Figure 5. Comparing Contextual Bandit (left) with Reinforcement Learning (right).

affects the reward Rt that the agent will get. Contextual bandit can be seen as a simpler
form of RL, as illustrated in Figure 5.

Another assumption made is that the problem can be modeled as a Markov de-
cision process (MDP) [Sutton and Barto 2018] and therefore has the Markov property,
which states that every information necessary by the agent to achieve the optimal policy
is observable by the agent in the state space. In the real world, considering the complexity
of the trading market, the Markov property might not be the best assumption, which would
force the modeling of a partially observable Markov decision process (POMDP), which
makes the solution much more complex. However, in this version of the simulator that
we present here, the problem is considered an MDP and the observations are considered
to be the states, i.e., Ot = St.

State representation: The agent needs information about the time series of each asset
of the portfolio. So, if a portfolio has n assets with history information of t steps
in the past (time series with t time window), a matrix if size (n, t) is necessary
to represent all the information. However, this bi-dimensional representation only
encompasses one feature when, in fact, multiple features might be necessary for
the agent to capture market trends. [Weng et al. 2020] shows that the most im-
portant features to use in the portfolio optimization problem are closing, low and
high price but features like volume, open price and even indicators can be used in
the state representation. Therefore, the state space is better represented as a multi-
dimensional matrix of shape (f, n, t), where f is the number of features, n is the
number of assets and t is the time window of the times series. Figure 6 represents
the state space for portfolio optimization tasks.

Figure 6. State space for portfolio optimization.

Action space: Considering the mathematical formulation introduced in section 2.1, the
action space for RL agents trained for the portfolio optimization problem is iden-
tical to the weights vector Wt and follows the same restrictions. Note that, in the
context of DRL agents, these restrictions are easily implemented using a softmax
activation function in the policy output layer.

Reward function: Many functions can be used to model the environment reward,
but the most common one is the logarithmic rate of return rt introduced in
Equation 4, since it is available naturally at each time step. Some papers
[Almahdi and Yang 2017, Betancourt and Chen 2021] have also sought to incor-
porate some indicators (mainly the SR index) for the reward function so that the
agent learns to deal with market risk.

4. Proposed Environment
With the advent of DRL in financial markets, many frameworks and environments have
been developed to allow the research in the area. Many of those environments, like gym-
anytrading [Haghpanah 2023], gym-mtsim [Haghpanah 2021] and the ones available in
FinRL-Meta [Liu 2022], follow OpenAI Gym’s architecture and are integrated with many
RL libraries but do not provide the Markov representation presented in Section 3. Oth-
ers, like [Amrouni 2022], are developed with the mathematical formulations presented in
previous sections but are not well integrated with RL libraries.

To improve this scenario, we propose an open-source environment for RL agents
that is able to simulate the main aspects of the portfolio optimization task considering the
definitions presented in Sections 2 and 3 and is integrated with modern RL libraries. This
environment1 is a contribution to finRL-Meta [Liu 2022], a repository containing multiple
open-source environments of finRL [Liu et al. 2022b], one of the main RL frameworks
for finance.

4.1. Guidelines
The proposed environment has the following guidelines:

Complete integration with FinRL: FinRL provides a full pipeline to build, evaluate and
deploy DRL agents that operate on the financial market, the reason why the pro-
posed environment was designed to be a part of it. To have full integration with
FinRL allows this project to be considerably ”plug-and-play”, increasing the con-
venience for researchers.

Generality: As seen in previous sections, the portfolio optimization task has many pa-
rameters to be considered: portfolio size, time window size, trading fee percent-
age, etc. For that reason, the proposed environment follows the guideline of being
as general as possible so that users do not need to modify its code the majority of
the time.

OpenAI Gym structure: Since OpenAI Gym [Brockman et al. 2016] is currently the
most famous framework for standardizing RL environments, this project aims to
follow its structure, allowing it to be used outside of FinRL.

Integration with reliable DRL libraries: One of the main reasons to use OpenAI Gym
structure is to allow the environment to be used with reliable DRL libraries that
have integrations with Gym’s structure. The ability to use this environment with
powerful tools such as stable-baselines-3 [Raffin et al. 2021] or ElegantRL can
improve research considerably.

1The implementation code is available in https://github.com/C4i0kun/FinRL-Meta/
tree/portfolio_allocation/meta/env_portfolio_optimization, but it will be
eventually merged to FinRL-Meta (https://github.com/AI4Finance-Foundation/
FinRL-Meta) when the merge request is accepted.

https://github.com/C4i0kun/FinRL-Meta/tree/portfolio_allocation/meta/env_portfolio_optimization
https://github.com/C4i0kun/FinRL-Meta/tree/portfolio_allocation/meta/env_portfolio_optimization
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/FinRL-Meta

Open contribution: This project aims to be open-source and contributions from the
community over time will let new features to be added to it. The main idea of
this environment is to be eventually merged to FinRL-Meta when approved by the
maintainers so that a larger community is able to use it and contribute to it.

4.2. Implementation

The environment was implemented using Python programming language and, as stated
in section 4.1, it is an OpenAI Gym environment, which has reset, step and render
interface. As any Python object, to use that interface, it’s necessary to instantiate the
PortfolioOptimizationEnv and determine a Pandas [Team 2023] dataframe that
contains historical data and an initial amount to invest. Following the generality guideline,
many simulation parameters can be determined, such as:

• A normalization method, which can be one of the included normalization methods
or can be created by the user;

• A time window to represent the state (see Section 3);
• Commission fee model (weights vector modifier or transaction remainder factor)

and a commission fee rate to be considered in the models;
• The list of columns from the dataframe to be considered as features by the envi-

ronment (unlisted columns are ignored). It is also possible to modify the feature
that is used to calculate the portfolio value (by default, the asset’s closing price);

• Options to deal with dataframe’s column names and time format if the user is not
using FinRL’s default ones;

• A repository in which graphs must be saved.

After determining all the parameters, it’s finally possible to interact with the en-
vironment. Since it follows an OpenAI Gym’s structure, any agent that receives the state
and determines an action (a weights vector) at each time step can be used, being an RL
agent or not. The agent must interact through a reset, step, and render interface.

reset: This method is responsible for resetting the environment by returning the sim-
ulation date to the first date of the dataframe. It also modifies the environment
attributes to their default value, allowing the simulation to execute again. This
method returns the current state after resetting.

step: As the name suggests, this method is responsible for executing a simulation step.
As seen in section 2, a step modifies the portfolio considering price fluctuation
during periods. The amount of time a step represents depends on the dataframe
used by the environment: if the dataframe contains daily time series, then it is
assumed that a step represents a period of a full day. This method needs to have
an action parameter (that is the new portfolio weights the agent wants to allocate)
and returns the common necessary information for an RL algorithm: a new state,
a reward considering the action performed in the previous state, and a boolean
variable defining if the next state is terminal.

render: Renders the environment so that a human user can visualize what is happening.
Currently, this method only returns the current state’s numerical values.

It’s important to understand what is defined as an episode in this environment:
considering a dataframe ordered by time and being t the size of the time window and T

the last time step of the dataframe, the episode will start in the t-th time step and end
when the environment tries to access an unexistent T + 1 time step. At that moment, the
step method will stop simulating the passage of time and will print and plot metrics of
the portfolio related to the full episode. To start a new episode, the agent must use the
reset method.

4.3. Visualizing performance

After an episode, it’s important to assess the agent’s performance using the performance
metrics presented in section 2.3. Therefore, the proposed environment makes use of
QuantStats [Aroussi 2023] library to provide not only reliable metric calculations but
also graphs so that researchers can understand the behavior of the trading system.

Figures 7 and 8 show two graphs generated by the environment: the portfolio sum-
mary and rewards over time. As it can be seen, even though the portfolio had great results
according to the cumulative return of figure 7, the rewards shown in figure 8 indicates
that the agent receives erratic rewards during the episodes and is not learning with the
experience at all. In fact, the agent used in this example performs a simple buy-and-hold
strategy in a portfolio of 19 assets of the Brazilian market from 2010 and 2022, so it does
not adjust according to the market’s dynamics and only makes a profit due to the growth
of Brazilian’s market in the period.

Figure 7. Visualization of portfolio summary.

5. Conclusions

This article presented an open-source portfolio optimization environment for RL agents to
improve the standardization of benchmarks and comparisons between researchers in the
area. Being developed as part of FinRL, the proposed environment can benefit from its
features and be used in its ecosystem as part of an automatic financial pipeline. This
project was also developed following OpenAI Gym’s structure and, because of that,
has great integrations with many RL algorithm repositories, such as stable-baselines-3
[Raffin et al. 2021] and ElegantRL [Liu et al. 2022a]. All of those design decisions can

Figure 8. Visualization of portfolio reward.

considerably impact the area of research positively since the environment is plug-and-
play, which allows the researchers to focus on the agent’s architecture and feature extrac-
tions.

Future works can focus on turning the environment even more realistic by consid-
ering the agent’s impact on the market if big trades or trades related to a low-volume asset
are done, transforming the problem into a full RL problem. Another area of improvement
is the fact that this environment is modeled as a Markov decision process, something not
very realistic as stated in Section 3, so the addition of a partially observable Markov de-
cision process model of the problem would be necessary. Finally, the state representation
forces all the assets of the portfolio to be analyzed in the same time window, which may
not be possible for all assets. A solution to this problem can be addressed in future works,
making the environment even more general.

Acknowledgments
The authors would like to thank the Programa de Bolsas Itaú (PBI) of the Centro de
Ciência de Dados (C2D) at Escola Politécnica at USP, supported by Itaú Unibanco S.A.,
and the Brazilian National Council for Scientific and Technological Development (CNPq
Grant N. 310085/2020-9).

References
Almahdi, S. and Yang, S. Y. (2017). An adaptive portfolio trading system: A risk-return

portfolio optimization using recurrent reinforcement learning with expected maximum
drawdown. Expert Systems with Applications, 87:267–279.

Amrouni, S. (2022). Selimamrouni/Deep-Portfolio-Management-Reinforcement-
Learning: V2.0. Zenodo.

Aroussi, R. (2023). Ranaroussi/quantstats.

Betancourt, C. and Chen, W.-H. (2021). Deep reinforcement learning for portfolio man-
agement of markets with a dynamic number of assets. Expert Systems with Applica-
tions, 164:114002.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAI Gym.

Deng, Y., Bao, F., Kong, Y., Ren, Z., and Dai, Q. (2017). Deep Direct Reinforcement
Learning for Financial Signal Representation and Trading. IEEE Transactions on Neu-
ral Networks and Learning Systems, 28(3):653–664.

Haghpanah, M. A. (2021). Gym-mtsim.

Haghpanah, M. A. (2023). Gym-anytrading.

Henrique, B. M., Sobreiro, V. A., and Kimura, H. (2019). Literature review: Machine
learning techniques applied to financial market prediction. Expert Systems with Appli-
cations, 124:226–251.

Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., and Liu, M. (2015). Application of
evolutionary computation for rule discovery in stock algorithmic trading: A literature
review. Applied Soft Computing, 36:534–551.

Jiang, Z., Xu, D., and Liang, J. (2017). A Deep Reinforcement Learning Framework for
the Financial Portfolio Management Problem.

Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., and Ngo, D. C. L. (2014). Text
mining for market prediction: A systematic review. Expert Systems with Applications,
41(16):7653–7670.

Liu, X.-Y. (2022). FinRL-Meta: Market Environments and Benchmarks for Data-Driven
Financial Reinforcement Learning.

Liu, X.-Y., Li, Z., Yang, Z., Zheng, J., Wang, Z., Walid, A., Guo, J., and Jordan, M. I.
(2022a). ElegantRL-Podracer: Scalable and Elastic Library for Cloud-Native Deep
Reinforcement Learning.

Liu, X.-Y., Yang, H., Gao, J., and Wang, C. D. (2022b). FinRL: Deep reinforcement
learning framework to automate trading in quantitative finance. In Proceedings of the
Second ACM International Conference on AI in Finance, ICAIF ’21, pages 1–9, New
York, NY, USA. Association for Computing Machinery.

Magdon-Ismail, M., Atiya, A. F., Pratap, A., and Abu-Mostafa, Y. S. (2004). On the max-
imum drawdown of a Brownian motion. Journal of Applied Probability, 41(1):147–
161.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021).
Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of Ma-
chine Learning Research, 22(268):1–8.

Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1):49–
58.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA.

Team, T. P. D. (2023). Pandas-dev/pandas: Pandas. Zenodo.

Weng, L., Sun, X., Xia, M., Liu, J., and Xu, Y. (2020). Portfolio trading system of dig-
ital currencies: A deep reinforcement learning with multidimensional attention gating
mechanism. Neurocomputing, 402:171–182.

	Introduction
	Portfolio optimization
	Mathematical definition
	Trading fees
	Performance metrics
	Common hypotheses

	Reinforcement learning in the portfolio optimization problem
	Proposed Environment
	Guidelines
	Implementation
	Visualizing performance

	Conclusions

