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ABSTRACT 

Context: traditional hazard analysis techniques were not proposed 

to be used in the Requirements Engineering (RE) process. 

Objective: The aim of this work is to present and discuss a new 

method for early safety requirements specification called SARSSi* 

to be used at the beginning of the development of safety-critical 

systems. Method: this goal is achieved through the combination of 

two techniques: (1) STAMP/STPA; and (2) i* language. Results: 

this paper attempts to bridge the gap between two parallel trends in 

systematic safety approaches – the combination of requirements 

and safety engineering techniques. Our method consists of six 

steps and guidelines to perform a preliminary hazard analysis and 

facilitate the systematic identification of safety-critical functions 

and components. Conclusions: We demonstrate the utility of our 

method by applying it in a real industry case study. The initial 

results show preliminary suitability of our method and its 

contribution to improving the visualization of the information 

generated in the hazard analysis such as the hazards, their causes, 

environmental conditions, and safety requirements. 

CCS CONCEPTS 

Software and its engineering → Software creation and 

management → Designing software → Requirements analysis. 
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1. Introduction 

Safety-critical systems (SCS) should be carefully 
specified since failures could result in accidents that cause 
damage to the environment, financial losses, injury to people 
and even the loss of lives [3]. Besides, SCS are usually 
submitted to safety certification processes. Hence, in their 
development, Hazard Analysis (HA) is required to ensure 

that the system is safe and the hazards of the system were 
appropriately handled [17].  

The increased complexity of sociotechnical systems has 
revealed the limited contributions of existing event-based 
accident analysis methods on sustainable safety 
improvements [1][2]. The most popular hazard analysis 
techniques such as Fault Tree Analysis (FTA), Event Tree 
Analysis (ETA), and Hazard and Operability Study 
(HAZOP) were developed many decades ago and have 
limitations in their applicability to today’s more complex, 
software-intensive, sociotechnical systems [1][2]. This 
occurs since they assume that accidents are caused by 
component failures, which is mostly not true for software 
[17]. Furthermore, they do not consider software errors, 
human errors, and system design errors. Neither they usually 
include organizational and management flaws. The 
traditional HA techniques do not match the complexity of the 
systems being built today or the new emerging causes of 
accidents. Furthermore, these techniques require stable 
architectures making difficult their use in the beginning of 
the development process like in the RE phase as well as in a 
safety-guided design [17]. 

Systems-Theoretic Accident Model and Processes 
(STAMP) proposed by Levesson [1] is a causality model 
useful not only in analyzing accidents that have occurred but 
in developing new and potentially more effective system 
engineering methodologies to prevent accidents [1]. The 
STAMP causality model has been the theoretical background 
for new techniques used by safety engineering such as CAST 
(Causal Analysis based on STAMP) [1][7] – an accident 
analysis technique - and STPA (System-Theoretic Process 
Analysis) [1] for hazard analysis [2]. 

STAMP and STPA have been applied in different areas 
such as aerospace systems [2], railway transportation [5][6], 
water contamination accident [1], U.S. Army friendly fire 
shootings [1], biodefense [4], maritime accidents [7], and 
road tunnels [4]. However, to the best of our knowledge, no 
single study so far covers the use of STAMP and STPA in 
the insulin infusion pump industry. 

In the safety analysis, there are many relationships 
among hazards, their causes, safety requirements and 
environmental conditions. Representing all such information 
through natural language has many difficulties. Among 
them, we can cite the dissatisfaction of practitioners [14] due 
to the tedious and error prone activity of managing large 
bodies of natural language requirements, and its ambiguity. 
In this context, the visualization and proper treatment of 



safety requirements is hampered. We observed these 
difficulties during an investigation of HA of an insulin 
infusion pump, but these problems are representative of 
those faced in other software-intensive safety-critical 
domains. Moreover, there is a tendency of using model-
based hazard analysis [5]. 

The early consideration of safety concerns in RE and 
design processes is a challenging task reported by many 
authors, for instance [1][5][7]. In previous systematic 
literature reviews about requirements communication in the 
development of safety-critical systems [5] and integration 
between RE and safety engineering [6], we discuss many 
challenges and open issues on this topic. 

In a previous paper [25], we performed a comparative 
study of some goal-oriented requirements languages (i*, 
KAOS, GRL, and NFR-Framework) that showed that they 
currently lack important features, such as the modeling of 
safety-related aspects, for describing SCS. The results also 
indicated that i* appears to be a promising language to 
specify safety requirements. 

The i* (istar) language is a requirements modelling 
language capable of representing the dependencies and 
relationships among actors in sociotechnical systems [10]. 
This language has been used in several domains [10], such as 
telecommunications, air traffic control, agriculture, e-
government, healthcare and business process. 

Considering i* ability to specify sociotechnical systems, 
we believe that such language is a good option to specify 
SCS and to represent the results of safety analysis. Hence, 
we advocate the use of this language in the Safety 
Requirements Specification method based on STAMP/STPA 
and i* (SARSSi*) proposed in this paper.  

Our work was motivated by the difficulties of 
representing the results of safety analysis through natural 
language [14][15] and the fact that common requirements 
specification languages do not fully support the needs of 
specifying SCS. Our goal is to provide guidance for the 
requirements engineers during HA and to specify the results. 
We illustrate the application of our method in a real industry 
case study of a low-cost insulin infusion pump that is being 
developed in a partnership between Brazilian academy and 
industry. 

This paper is organized as follows. The SARSSi* method 
combining STPA and i* is described in Section 2. An 
industrial case study of a low-cost insulin infusion pump is 
presented in Section 3. We discuss related works in Section 
4; the paper concludes with a brief summary of the findings 
and recommendations for future work in Section 5. 

2. Proposed method 

The SARSSi* method is composed of six steps that can 
be conducted iteratively as illustrated in Figure 1. Dividing 
the process into discrete steps reduces the analytical burden 
on the requirements and safety engineers and provides a 
structured process for hazard analysis [1].  

The main idea behind our method is to use the STPA 
hazard analysis procedure and model the results in i*. Hence, 
our method did not extend the language by adding new 

elements or relationships. The input is a preliminary system 
specification that can be represented in any requirements 
specification language. In the next sections, we detail each 
step of our method. 

 
Figure 1: SARSSi* method combining STPA and i* for 

hazard analysis. 

2.1 Step 1: Identify and model the accidents 

A safety-guided design must be adopted by the 
companies to avoid accidents and harms. When STPA is 
used in such type of design, only the system-level 
requirements and constraints may be available at the 
beginning of the process. Hence, the first step of the process 
is to identify the main accidents which may occur with the 
system including the participation of stakeholders with 
multiple competences and end-users. 

An Accident is an undesired and unplanned (but not 
necessarily unexpected) event that results in (at least) a 
specified level of loss. Accidents may cause damage to the 
environment, financial losses, injury to people and even the 
loss of lives [25].  

 
1) Guidelines for describing accidents in i* 

 
In i* language, the actors depend on each other to 

achieve their goals, to perform tasks or to obtain resources. 
In this step of SARSSi* method, we construct a Stategic 
Dependency (SD) model describing the dependency 
relationships among actors involved in the accidents 
adopting the following rules: 
1. Represent the actor – dependee - that will suffer the 

consequences with the accident (actors can be People, 
Property, Environment, Service, Hardware); 

2. Represent the actor – depender - that may cause the 
accident; 

3. Represent the accidents through goals (the accident can 
be described with an “A” in the beginning of the 
sentence and in the negative form - ex. A.Avoid…); 

4. Represent the dependency among the actors involved in 
the accident (depender and dependee); 

Step 1: Identify 

and model the 

accidents.

Step 2: Identify 

and model the 

hazards, their 

causes, and 

environmental 

conditions.

Step 3: Determine 

and model the 

safety hierarchical 

control structure.

Step 4: Identify 

possible 

control flaws.

Step 5: Identify 

and model the 

safety 

requirements.

Step 6: Evaluate 

the safety 

modeling.



5. Assign a code for each accident or harm identified for 
purpose of contributing for the traceability information. 

 
After specifying the accidents of the system, the next step 

in our method is to identify the hazards, their causes and the 
environmental conditions that can lead to accidents. 

2.2 Step 2: Identify and model the hazards, their 

causes, and environmental conditions 

Hazards are system states that might, under certain 
environmental or operational conditions (context), lead to an 
accident or cause a harm [25]. 

Accidents can be the result of environmental conditions 
not considered combined with hazardous situations. 
Therefore, it is important to specify the causes of the hazards 
as well as the environmental conditions explicitly and in an 
analyzable form. In our method, we describe the hazards, 
their causes, and the environmental conditions in the 
Strategic Rationale (SR) model that allows expressing how 
the actors achieve their goals. 
 

2) Guidelines for modeling the hazards, their causes, 

and environmental conditions in i* 

 
In the previous steps, we identified the relevant actors 

and their dependencies and modeled them in the SD model. 
Now, we can move on to the construction of the SR model 
that represents the intentional relationships within an actor. 

We argue that the hazards are situations described as 
goals that we do not want to achieve. Goals in i* can be 
refined through the AND-refinement intentional relationship 
that allows the requirements engineers to relate a goal with 
the four types of intentional elements of i* (goals, tasks, 
softgoals and resources). We use such refinement to 
represent the causes of hazards, and environmental 
conditions as well as to visualize the dependencies among 
them.  

In our method, we suggest the following instructions to 
model the hazards, their causes, and environmental 
conditions in i*: 
1. Refine the dependee actors (those who can suffer an 

accident) in the SR model with goals they want to 
achieve; 

2. Refine the depender actors (those who can contribute to 
a hazard) in the SR model adding new goals to represent 
the hazards (H), their causes (C), and the environmental 
conditions (E). These goals can be represented with 
letters in the beginning (H.; C.; E.) and in the negative 
format (ex. Do not have/Do not suffer/Should not [15]); 

3. Relate the new hazards goals with the corresponding 
causes and environmental conditions using an AND-
refinement relationship; 

4. Add new actors, goals and dependencies if necessary; 
5. Assign a code for each hazard, cause, and environmental 

condition identified for purpose of contributing for the 
traceability information. 

 

From the SD and SR models, we can create the safety 
hierarchical control structure that is described in the next 
step of our method. 

2.3  Step 3: Determine and model the safety 

hierarchical control structure 

In STPA, by describing accidents in terms of a hierarchy 
of control based on adaptive feedback mechanisms, 
adaptation plays a central role in the understanding and 
prevention of accidents [1]. The safety hierarchical control 
structure will differ among companies and examples are 
spread among the book of Levesson [1] and many papers 
[4][5][6][7]. Therefore, there are several correct safety 
hierarchical control structures: what is practical and effective 
will depend greatly on cultural and other factors [1].  

 
3) Guidelines for creating the safety hierarchical 

control structure from SD model 

 
Actors in i* are active entities that depend on each other 

to achieve goals, perform tasks and provide resources. Since 
actors can achieve goals that would hardly be met alone, they 
are good candidates for components in the safety hierarchical 
control structure. To obtain a preliminary version of such 
structure, the guidelines below can be followed: 
1. Represent the actors of the SD and SR models as 

components of the hierarchical control structure; 
2. Decompose the components into its constituent sub-

components until all sub-components that directly 
contributes to a hazard are identified; 

3. Create the software module component and decompose 
it into sub-modules; 

4. Represent the dependency relationships of the SD model 
as communication paths (interactions) among 
components; 

5. Specify the interactions between the components or sub-
components that directly communicate with each other; 

6. Add new components, i.e. users, hardware/mechanical 
devices and hardware/software subsystems as well as 
new relationships if necessary. 

7. Update the SD and SR models with the new components 
(actors) and interactions (dependency relationships) 
identified in this step. 

 
After defining the safety hierarchical control structure, 

the next step is to identify and model possible control flaws. 

2.4 Step 4: Identify possible control flaws 

According to the STAMP causality model, the 
classification of accident causal factors starts by examining 
each of the basic components of the safety hierarchical 
control structure and determining how their improper 
operation may contribute to the general types of inadequate 
control [1]. 

At each level of the hierarchical structure, inadequate 
control may result from missing constraints (unassigned 
responsibility for safety), inadequate safety control 
commands, commands that were not executed correctly at a 



lower level, or inadequately communicated or processed 
feedback about constraint enforcement [1]. Therefore, we 
aim at this step to evaluate if there are control flaws not 
detected yet and specify them in i*. 

 
4) Guidelines to identify possible control flaws 

 
1. At each level of the safety hierarchical structure, verify 

if there are inadequate controls that can lead to 
hazardous situations that were not identified yet. 

2. If there is, specify the hazards as proposed in step 2. 
3. If necessary, update the safety control structure. 
4. Evaluate if there are new environmental conditions and 

model them as described in step 2; 
5. If new elements were identified, assign a code for each 

new element. 
The hazard analysis requires the definition of system 

requirements and constraints necessary to eliminate or 
mitigate the hazards and therefore to increase the system 
safety. In the next section, we describe the step to represent 
this information. 

2.5 Step 5: Identify and model the safety 

requirements 

Our focus in this step of our method is to capture the 
safety requirements that should be able to eliminate or 
mitigate a hazard. We rely on the AND/OR refinements of i* 
to model these elements. 

 
5) Guidelines for modeling the safety requirements in i* 

 
 In the previous steps, we modeled the hazards, their 

causes, and environmental conditions as goals and related 
them with AND/OR refinements. With this modeling we 
represent all the situations we want to avoid in order to 
develop a safe system, similarly to the approach adopted by 
Lamsweerde [22] to model anti-goals related to security. In 
this step, we relate the hazards, their causes and 
environmental conditions with the safety requirements by 
using the AND/OR refinements of i* language considering 
the following guidelines: 
1. Represent the safety requirement as a task element. 
2. Evaluate if the hazard (goal) has an environmental 

condition (subgoal):  
2.1. If it does not have, associate the new task created 

directly with the hazard using an OR-refinement. 
2.2. If the hazard has environmental conditions: 

2.2.1. If the new task is a means to mitigate all 
environmental conditions, connect the new 
task with the hazard (parent goal) using 
AND-refinement; 

2.2.2. If the new task is a means to mitigate some 
(not all) environmental conditions, connect 
the new task with each environmental 
condition using OR-refinement; 

2.2.3. If the new task is not a means to mitigate any 
environmental condition, but it is a strategy 
to mitigate the hazard, connect the new task 

with the hazard (parent goal) using AND-
refinement. 

3. Add new dependency relationships to represent the 
safety requirements if necessary; 

4. Assign a code for each safety requirement identified for 
purpose of contributing for the traceability information. 

 
i* good practices, for example [27][30], can be adopted 

to model such information and to address situations not cited 
in this paper. After modeling the accidents, hazards, 
environmental conditions, control flaws and the safety 
requirements, the next step is to evaluate the safety 
modeling. 

2.6 Step 6: Evaluate the safety modeling 

The final step of our method is to analyze if we modeled 
the safety concepts needed at this early safety analysis. It is 
performed checks whether the safety concepts and 
relationships are presented in the specification. We present 
some guidelines to assist the requirements engineer in this 
task. 

 
6) Guidelines for evaluating the generated models 

 
• Verify if all accidents have at least one hazard; 
• Verify if there is any cause of hazard or 

environmental condition missing; 
• Verify if every hazard has at least one safety 

requirement; 
• Verify if there is any component with an interaction 

missing in the safety control structure. 
After such preliminary evaluation, a detailed and 

rigorous evaluation should be performed by safety engineers. 
In the next section, we will use our SARSSi* method to 
model and analyze a case to show the utility of our method. 

3. SARSSI* applied in an Insulin Infusion Pump 

The safety of insulin infusion pumps (IIP) has been one 
of the main concerns in health care domain since in the 
analysis of incidents involving these equipments, medical 
device regulators concluded that two of the major factors 
contributing to insulin infusion pump failures were software 
defects and user interface issues [12]. 

Modern insulin pumps depend on software for new 
features. Software is increasingly responsible for safety 
functions such as dosage control, interpreting user input and 
providing display output, and mitigating certain hazards 
through alarms and alerts [11]. We agree with Zhang et al. 
[11] that implementing safety requirements using model-
based methods may reduce design/implementation flaws in 
insulin pump development and evolutionary processes, 
therefore improving overall safety of insulin pump software. 

3.1 Sources of information 

Unfortunately, no automatic tools exist for identifying 
hazards. It takes domain expertise and depends on subjective 



evaluation by those constructing the system. Accordingly, 
the HA provided in this paper regarding the IIP is based on 
the following sources of information: 

• Domain knowledge from the authors; 
• User manual of insulin infusion pumps available in 

the market; 
• Insulin infusion pump requirements specification; 
• Papers regarding a protocol previously developed [8] 

and lessons learned in previous analysis [9]; 
• Recommendations on insulin infusion pump design, 

and previous hazard analysis of insulin infusion 
pumps found in the literature [11][12][13]. 

 
The motivation for the Brazilian company to develop a low-
cost IIP is the absence of companies in Brazil developing 
such device [8][9]. The system goal is to provide safe and 
effective treatment for people suffering from Diabetes 
Mellitus (DM1) and to enhance the long-term health of the 
patients. In the next sections, we outline the application of 
the proposed method in the IIP project. 

3.2 Step 1: Identify and model the accidents 

Some accidents than can occur due to the use of the 
insulin infusion pump are presented in Figure 2. It just shows 
a partial view. We assigned a code for all information with 
the purpose of contributing for the traceability information in 
future proposals. The actors identified at this step were the 
Environment, User, Alarms, Motor Module, Battery, and 
Infusion Mechanism. 

 

 
Figure 2: Partial view of some accidents that can occur 

in using the IIP. 

3.3 Step 2: Identify and model the hazards, their 

causes, and environmental conditions 

We used our sources of information to determine the 
hazards, their causes as well as the environmental conditions 
that contribute to accidents. For example, the User actor 
depends on the Infusion Mechanism actor for A1. Avoid 
incorrect treatment (accident). To achieve this goal, Infusion 
Mechanism should mitigate the hazard H1. Avoid an 

overdose. This hazard will not occur if the cause TC1.Do not 
have free flow is satisfied. This goal is satisfied if all 
subgoals that represent the environmental conditions 
associated with this cause of hazard is satisfied.  

Examples of conditions associated with the free flow are:  
• Valves in the delivery path are broken (TC.1.C1);  

• Air pressure within the pump is much lower/higher than 
ambient air pressure (TC.1.C2);  

• Pump is positioned much higher than the infusion site, 
causing unintentional drug flow (TC.1.C3);  

• Delivery path is damaged, creating a vent on the path 
that allows unintentional gravity flow (TC.1.C4); and  

• Large temperature changes causing a mismatch 
between drug reservoir volume change and insulin 
density change (TC.1.C5). 
 

The modeling of the hazard overdose, free flow as a 
cause of this hazard and the associated environmental 
conditions are illustrated in Figure 3. Finally, the SD and SR 
models were updated with the new actors and dependencies 
identified in this step. 

 
Figure 3: Partial view of the hazard overdose, causes, 

environmental conditions and safety requirements. 

3.4 Step 3: Determine and model the safety 

hierarchical control structure 

From the SD and SR models, we obtained the safety 
hierarchical control structure of the IIP, following the 
guidelines of section 2.3, and it is illustrated in Figure 5. We 
represented the actors of the SD model as components of the 
control structure and we decomposed the system into its 
constituent sub-components: syringe plunger, catheter 
(tube), reservoir, display (interface), device data recorder 
(flash memory), microcontroller. We also decomposed the 
software module component into sub-modules: Motor 
Module, Business, Display, Main, State-view, and Timer. The 
information about the decompositions of the components 
were extracted from the sources of information presented in 
Section 3. 



The dependency relationships of the SD model were 
represented as interactions among components and we also 
specified the interactions between the system and its sub-
components that directly communicate with it. 

The control structure diagram in STPA may have four 
components: controller (automated/human), actuator, 
controlled process, and sensors. In this case study, we did not 

include any sensor component such as pressure sensors (up 
or down) which can detect when the syringe is empty or 
when the patient’s vein is blocked. Since these sensors are 
defined in the design phase and we are specifying the system 
at requirements level, it is not the scope of the method to 
describe sensors at this stage of analysis.  

 
Figure 4: The safety hierarchical control strcuture of infusion pump. 

3.5 Step 4: Identify possible control flaws 

In this step, we evaluated if control flaws were not 
detected by analyzing the causes of the hazards specified as 
well as in the safety hierarchical control structure. An 
example of a serious control flaw in the insulin infusion 
pump would be not controlling the timer. This flaw could 
originate incorrect treatment for the user (patient) since it is 
used to control the amount of insulin he/she will receive. If 
control flaw are detected, the engineer should represent them 
as hazards and return to step 2. 

3.6 Step 5: Identify and model the safety 

requirements 

From the hazards, their causes, and environmental 
conditions, a set of safety requirements were derived to 
prevent them. For example, considering the H.1 Avoid an 
overdose hazard and one of its causes that is the Free flow 
(TC.1) illustrated previously. Some safety requirements to 
mitigate them can be the operation of the pump within a 
temperature range of x°C to y°C, and Manage reservoir 
volume (see 00). They should be described in i*, following 
the guidelines of Step 5. 

3.7 Step 6: Evaluate the system safety 

We performed the evaluation of the generated i* models. 
We checked the SD and SR models for syntax and modeling 
errors and we ensure that the accidents have at least one 
hazard; every hazard have at least one safety requirement; 

and we believe that the safety relevant interactions among 
the components of the safety hierarchical control necessary 
were specified. As a problem inherent of software 
development, problems may be detected in the later stages of 
system development. However, it is important to note that 
this is an iterative method; hence, if some information is 
missing, the steps can be performed as much as necessary 
until the models are complete. 

We conducted a comparative analysis among other 
specification methods of safety requirements: SafeUML 
[23], an UML Profile [24], and SafeML [21]. We analyzed 
the methods using 20 criteria classified in four groups: 
Modeling, Guidelines, Analysis, and Tool. The results are 
presented in the next section. 

4. Related work and Comparative analysis 

 
The modeling group represents the features related to 

specification of important safety concepts addressed by 
SARSSi*, such as hazards, environmental conditions, safety 
functional requirements, system goals, that should be 
addressed by RE. 

The Guidelines group describes if the method has some 
mechanism to guide engineers during safety analysis. The 
third group supports different types of analysis: safety 
analysis (backward or forward), trade-off analysis and 
communication among teams. Finally, the last group gathers 
features that tools used in these methods should support such 
as Generation of documentation and reports from the system 



model, Language consistency checker, ability to relate 
language elements with external resources, and maintenance 
of consistency among the multiple models and views. We 

assigned Y (yes) if the method satisfies the criterion and N 
(No) if it does not satisfy. The results are listed in Table 1. 

Table 1: Results of the comparative analysis among the proposed method, safeuml, umlprofile, and safeml. 

# Group Criterion SARSS
i* 

SafeU
ML 
[23] 

UML 
Profile 

[24] 

SafeML 
[21] 

1 

Modeling 

Modeling of causes of hazards Y Y Y Y 

2 Modeling of environmental conditions Y Y Y Y 

3 Modeling of Safety Functional Requirements Y Y Y Y 

4 Representation of system goals Y N Y Y 

5 Allow to represent the relationships among hazards, their causes, the 
environmental conditions and the safety requirements in a graphical form 

Y Y Y Y 

6 Support of different types of hazards Y N N N 

7 Different levels of abstraction Y Y Y Y 

8 Extend the language N Y Y Y 

9 Specification Language i* UML UML SysML 

10 

Guidelines 

Guidelines to derive safety requirements  Y N N N 

11 Guidelines to support hazard analysis Y N N N 

12 Structured process for documenting the hazard analysis Y N N N 

13 

Analysis 

Backward (B) and Forward (F) analysis F/B F/B B B 

14 Support trade-off analyses Y N N N 

15 Contribute to communication amongst RE and safety teams Y Y Y Y 

16 

Tool 

Tool support Y Y Y Y 

17 Generation of documentation and reports from the system model N Y Y Y 

18 Language consistency checker Y Y Y Y 

19 Elements can be related to the external resources N Y Y Y 

20 Maintain consistency among the multiple models and views Y Y Y Y 

 
All methods have tool support to model the safety concepts, 
which is fundamental for their adoption. Our method is the 
only one that does not extend the language and therefore all 
tools that support i* [16] can be used, for instance OpenOME, 
OME, and Pistar1. Moreover, SARSSi* is the only method that 
provides a structured process for documenting the hazard 
analysis and guidelines to derive safety requirements (Section 
2.5).  

SafeUML aims to model design elements (out of scope of 
SARSSi*) such as implementation, behavior, and interface 
elements. Therefore, the concepts necessary in early safety 
analysis are not addressed. An alternative is use SARSSi* and 
SafeUML together in different stages of development. 

SafeML is a profile for SysML language that has more 
safety concepts to be specified at the RE phase compared to 
SafeUML and our method. However, its broader scope makes 
it more difficult to use in early safety analysis by 
unexperienced stakeholders. Finally, an UML Profile focuses 
in structuring arguments rather the specification of hazards and 

 
1 https://www.cin.ufpe.br/~jhcp/pistar/tool/# 

safety-related information, neither consider the requirements of 
safety standards. 

The method was applied in a real case study. All sources of 
information regarding insulin infusion pumps used in this paper 
are available in the literature and were properly cited (see 
section 3). Therefore, we provided enough information to 
researchers that support the full or partial independent 
verification or replication of the claimed contributions.  

In the low-cost IIP, using i* we came up with a very 
different view of the hazards, their causes and safety 
requirements. Since this language was proposed to be used 
early in the RE process, we argue that it is adequate to model 
the results of a preliminary HA. We found this language to be a 
good fit for capturing the accidents, hazards, their causes, 
environmental conditions as well as safety requirements and 
model them in the SD and SR models. We did not encounter 
challenges that would indicate an inadequacy in the expressive 
power of i* language for hazard analysis, nor did we find that 
i* made the design more complex than necessary. 

Furthermore, it is possible to generate behavioral models 
for adaptive [18] and context-sensitive systems [19] from goal-
oriented models such as i*. Since our method relies on i*, it 



supports trade-off analysis [20] that can be conducted to 
evaluate the impact of the different hazards and their causes in 
the satisfaction of safety requirements. Moreover, such analysis 
contributes to risk analysis.  

5. Conclusions and further research 

Traditional HA techniques are limited by a focus on failure 
events and the role of component failures in accidents; they do 
not account for component interaction accidents, the complex 
roles that software and humans are assuming in high-tech 
systems, the organizational factors in accidents, as well as the 
indirect relationships among events and actions required to 
understand why accidents occur [1]. 

In this context, the early consideration of safety concerns in 
the RE and design processes is a challenging task in industry. 
We aim to reduce this gap with the novel SARSSi* safety 
requirements specification method based on STAMP/STPA 
and i* language proposed in this paper. It enables to analyze 
system safety in the RE phase based on the use of STPA and i* 
language. The combination of STPA and i* language is novel 
and we advocate that is useful in practice, and can represent a 
contribution in the safety-critical software industry. 

In our method, we modeled accidents, hazards, their 
causes, and environmental conditions as goals and related them 
with AND/OR refinements. With this approach of modeling in 
early analysis, we represent all situations we want to avoid in 
order to develop a safe system, similarly to the approach 
adopted by Lamsweerde [22] to model anti-goals related to 
security.  

As future works, we envision, besides applying the method 
in other real cases, the proposal of traceability relationships as 
well as a tool to fully support the application of our method. 
We aim to develop a plugin for the pistar tool to support our 
method. One useful feature of this tool would be the generation 
of documentation and reports from i* models. Moreover, a 
controlled experiment to compare costs, understanding and 
usability of the specification of safety requirements in i* as 
proposed in our method with the related works may be 
performed.  
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