
SARSSi*: a Safety Requirements Specification Method based on

STAMP/STPA and i* language

Jéssyka Vilela1, Carla Silva1, Jaelson Castro1, Luiz Eduardo G. Martins2, Tony Gorschek3
1Universidade Federal de Pernambuco (UFPE), Brazil, e-mail: {jffv, ctlls, jbc}@cin.ufpe.br

2Universidade Federal de São Paulo (UNIFESP), Brazil, email: legmartins@unifesp.br
3Blekinge Institute of Technology (BTH), Sweden, email: tony.gorschek@bth.se

ABSTRACT

Context: traditional hazard analysis techniques were not proposed

to be used in the Requirements Engineering (RE) process.

Objective: The aim of this work is to present and discuss a new

method for early safety requirements specification called SARSSi*

to be used at the beginning of the development of safety-critical

systems. Method: this goal is achieved through the combination of

two techniques: (1) STAMP/STPA; and (2) i* language. Results:

this paper attempts to bridge the gap between two parallel trends in

systematic safety approaches – the combination of requirements

and safety engineering techniques. Our method consists of six

steps and guidelines to perform a preliminary hazard analysis and

facilitate the systematic identification of safety-critical functions

and components. Conclusions: We demonstrate the utility of our

method by applying it in a real industry case study. The initial

results show preliminary suitability of our method and its

contribution to improving the visualization of the information

generated in the hazard analysis such as the hazards, their causes,

environmental conditions, and safety requirements.

CCS CONCEPTS

Software and its engineering → Software creation and

management → Designing software → Requirements analysis.

KEYWORDS
Hazard analysis, safety analysis, safety requirements, requirements
engineering, safety engineering, i*, istar, STAMP, STPA, insulin
infusion pump.

ACM Reference format:

Jéssyka Vilela, Carla Silva, Jaelson Castro, Luiz Eduardo G. Martins, Tony

Gorschek. 2019. SARSSi*: a Safety Requirements Specification Method

based on STAMP/STPA and i* language. In Proceedings of I Brazilian

Workshop on lArge-scale cRitical systEms BWare 2019, Salvador-BA,

Brazil, 8 pages. https://doi.org/10.1145/1234567890

1. Introduction

Safety-critical systems (SCS) should be carefully
specified since failures could result in accidents that cause
damage to the environment, financial losses, injury to people
and even the loss of lives [3]. Besides, SCS are usually
submitted to safety certification processes. Hence, in their
development, Hazard Analysis (HA) is required to ensure

that the system is safe and the hazards of the system were
appropriately handled [17].

The increased complexity of sociotechnical systems has
revealed the limited contributions of existing event-based
accident analysis methods on sustainable safety
improvements [1][2]. The most popular hazard analysis
techniques such as Fault Tree Analysis (FTA), Event Tree
Analysis (ETA), and Hazard and Operability Study
(HAZOP) were developed many decades ago and have
limitations in their applicability to today’s more complex,
software-intensive, sociotechnical systems [1][2]. This
occurs since they assume that accidents are caused by
component failures, which is mostly not true for software
[17]. Furthermore, they do not consider software errors,
human errors, and system design errors. Neither they usually
include organizational and management flaws. The
traditional HA techniques do not match the complexity of the
systems being built today or the new emerging causes of
accidents. Furthermore, these techniques require stable
architectures making difficult their use in the beginning of
the development process like in the RE phase as well as in a
safety-guided design [17].

Systems-Theoretic Accident Model and Processes
(STAMP) proposed by Levesson [1] is a causality model
useful not only in analyzing accidents that have occurred but
in developing new and potentially more effective system
engineering methodologies to prevent accidents [1]. The
STAMP causality model has been the theoretical background
for new techniques used by safety engineering such as CAST
(Causal Analysis based on STAMP) [1][7] – an accident
analysis technique - and STPA (System-Theoretic Process
Analysis) [1] for hazard analysis [2].

STAMP and STPA have been applied in different areas
such as aerospace systems [2], railway transportation [5][6],
water contamination accident [1], U.S. Army friendly fire
shootings [1], biodefense [4], maritime accidents [7], and
road tunnels [4]. However, to the best of our knowledge, no
single study so far covers the use of STAMP and STPA in
the insulin infusion pump industry.

In the safety analysis, there are many relationships
among hazards, their causes, safety requirements and
environmental conditions. Representing all such information
through natural language has many difficulties. Among
them, we can cite the dissatisfaction of practitioners [14] due
to the tedious and error prone activity of managing large
bodies of natural language requirements, and its ambiguity.
In this context, the visualization and proper treatment of

safety requirements is hampered. We observed these
difficulties during an investigation of HA of an insulin
infusion pump, but these problems are representative of
those faced in other software-intensive safety-critical
domains. Moreover, there is a tendency of using model-
based hazard analysis [5].

The early consideration of safety concerns in RE and
design processes is a challenging task reported by many
authors, for instance [1][5][7]. In previous systematic
literature reviews about requirements communication in the
development of safety-critical systems [5] and integration
between RE and safety engineering [6], we discuss many
challenges and open issues on this topic.

In a previous paper [25], we performed a comparative
study of some goal-oriented requirements languages (i*,
KAOS, GRL, and NFR-Framework) that showed that they
currently lack important features, such as the modeling of
safety-related aspects, for describing SCS. The results also
indicated that i* appears to be a promising language to
specify safety requirements.

The i* (istar) language is a requirements modelling
language capable of representing the dependencies and
relationships among actors in sociotechnical systems [10].
This language has been used in several domains [10], such as
telecommunications, air traffic control, agriculture, e-
government, healthcare and business process.

Considering i* ability to specify sociotechnical systems,
we believe that such language is a good option to specify
SCS and to represent the results of safety analysis. Hence,
we advocate the use of this language in the Safety
Requirements Specification method based on STAMP/STPA
and i* (SARSSi*) proposed in this paper.

Our work was motivated by the difficulties of
representing the results of safety analysis through natural
language [14][15] and the fact that common requirements
specification languages do not fully support the needs of
specifying SCS. Our goal is to provide guidance for the
requirements engineers during HA and to specify the results.
We illustrate the application of our method in a real industry
case study of a low-cost insulin infusion pump that is being
developed in a partnership between Brazilian academy and
industry.

This paper is organized as follows. The SARSSi* method
combining STPA and i* is described in Section 2. An
industrial case study of a low-cost insulin infusion pump is
presented in Section 3. We discuss related works in Section
4; the paper concludes with a brief summary of the findings
and recommendations for future work in Section 5.

2. Proposed method

The SARSSi* method is composed of six steps that can
be conducted iteratively as illustrated in Figure 1. Dividing
the process into discrete steps reduces the analytical burden
on the requirements and safety engineers and provides a
structured process for hazard analysis [1].

The main idea behind our method is to use the STPA
hazard analysis procedure and model the results in i*. Hence,
our method did not extend the language by adding new

elements or relationships. The input is a preliminary system
specification that can be represented in any requirements
specification language. In the next sections, we detail each
step of our method.

Figure 1: SARSSi* method combining STPA and i* for

hazard analysis.

2.1 Step 1: Identify and model the accidents

A safety-guided design must be adopted by the
companies to avoid accidents and harms. When STPA is
used in such type of design, only the system-level
requirements and constraints may be available at the
beginning of the process. Hence, the first step of the process
is to identify the main accidents which may occur with the
system including the participation of stakeholders with
multiple competences and end-users.

An Accident is an undesired and unplanned (but not
necessarily unexpected) event that results in (at least) a
specified level of loss. Accidents may cause damage to the
environment, financial losses, injury to people and even the
loss of lives [25].

1) Guidelines for describing accidents in i*

In i* language, the actors depend on each other to

achieve their goals, to perform tasks or to obtain resources.
In this step of SARSSi* method, we construct a Stategic
Dependency (SD) model describing the dependency
relationships among actors involved in the accidents
adopting the following rules:
1. Represent the actor – dependee - that will suffer the

consequences with the accident (actors can be People,
Property, Environment, Service, Hardware);

2. Represent the actor – depender - that may cause the
accident;

3. Represent the accidents through goals (the accident can
be described with an “A” in the beginning of the
sentence and in the negative form - ex. A.Avoid…);

4. Represent the dependency among the actors involved in
the accident (depender and dependee);

Step 1: Identify

and model the

accidents.

Step 2: Identify

and model the

hazards, their

causes, and

environmental

conditions.

Step 3: Determine

and model the

safety hierarchical

control structure.

Step 4: Identify

possible

control flaws.

Step 5: Identify

and model the

safety

requirements.

Step 6: Evaluate

the safety

modeling.

5. Assign a code for each accident or harm identified for
purpose of contributing for the traceability information.

After specifying the accidents of the system, the next step

in our method is to identify the hazards, their causes and the
environmental conditions that can lead to accidents.

2.2 Step 2: Identify and model the hazards, their

causes, and environmental conditions

Hazards are system states that might, under certain
environmental or operational conditions (context), lead to an
accident or cause a harm [25].

Accidents can be the result of environmental conditions
not considered combined with hazardous situations.
Therefore, it is important to specify the causes of the hazards
as well as the environmental conditions explicitly and in an
analyzable form. In our method, we describe the hazards,
their causes, and the environmental conditions in the
Strategic Rationale (SR) model that allows expressing how
the actors achieve their goals.

2) Guidelines for modeling the hazards, their causes,

and environmental conditions in i*

In the previous steps, we identified the relevant actors

and their dependencies and modeled them in the SD model.
Now, we can move on to the construction of the SR model
that represents the intentional relationships within an actor.

We argue that the hazards are situations described as
goals that we do not want to achieve. Goals in i* can be
refined through the AND-refinement intentional relationship
that allows the requirements engineers to relate a goal with
the four types of intentional elements of i* (goals, tasks,
softgoals and resources). We use such refinement to
represent the causes of hazards, and environmental
conditions as well as to visualize the dependencies among
them.

In our method, we suggest the following instructions to
model the hazards, their causes, and environmental
conditions in i*:
1. Refine the dependee actors (those who can suffer an

accident) in the SR model with goals they want to
achieve;

2. Refine the depender actors (those who can contribute to
a hazard) in the SR model adding new goals to represent
the hazards (H), their causes (C), and the environmental
conditions (E). These goals can be represented with
letters in the beginning (H.; C.; E.) and in the negative
format (ex. Do not have/Do not suffer/Should not [15]);

3. Relate the new hazards goals with the corresponding
causes and environmental conditions using an AND-
refinement relationship;

4. Add new actors, goals and dependencies if necessary;
5. Assign a code for each hazard, cause, and environmental

condition identified for purpose of contributing for the
traceability information.

From the SD and SR models, we can create the safety
hierarchical control structure that is described in the next
step of our method.

2.3 Step 3: Determine and model the safety

hierarchical control structure

In STPA, by describing accidents in terms of a hierarchy
of control based on adaptive feedback mechanisms,
adaptation plays a central role in the understanding and
prevention of accidents [1]. The safety hierarchical control
structure will differ among companies and examples are
spread among the book of Levesson [1] and many papers
[4][5][6][7]. Therefore, there are several correct safety
hierarchical control structures: what is practical and effective
will depend greatly on cultural and other factors [1].

3) Guidelines for creating the safety hierarchical

control structure from SD model

Actors in i* are active entities that depend on each other

to achieve goals, perform tasks and provide resources. Since
actors can achieve goals that would hardly be met alone, they
are good candidates for components in the safety hierarchical
control structure. To obtain a preliminary version of such
structure, the guidelines below can be followed:
1. Represent the actors of the SD and SR models as

components of the hierarchical control structure;
2. Decompose the components into its constituent sub-

components until all sub-components that directly
contributes to a hazard are identified;

3. Create the software module component and decompose
it into sub-modules;

4. Represent the dependency relationships of the SD model
as communication paths (interactions) among
components;

5. Specify the interactions between the components or sub-
components that directly communicate with each other;

6. Add new components, i.e. users, hardware/mechanical
devices and hardware/software subsystems as well as
new relationships if necessary.

7. Update the SD and SR models with the new components
(actors) and interactions (dependency relationships)
identified in this step.

After defining the safety hierarchical control structure,

the next step is to identify and model possible control flaws.

2.4 Step 4: Identify possible control flaws

According to the STAMP causality model, the
classification of accident causal factors starts by examining
each of the basic components of the safety hierarchical
control structure and determining how their improper
operation may contribute to the general types of inadequate
control [1].

At each level of the hierarchical structure, inadequate
control may result from missing constraints (unassigned
responsibility for safety), inadequate safety control
commands, commands that were not executed correctly at a

lower level, or inadequately communicated or processed
feedback about constraint enforcement [1]. Therefore, we
aim at this step to evaluate if there are control flaws not
detected yet and specify them in i*.

4) Guidelines to identify possible control flaws

1. At each level of the safety hierarchical structure, verify

if there are inadequate controls that can lead to
hazardous situations that were not identified yet.

2. If there is, specify the hazards as proposed in step 2.
3. If necessary, update the safety control structure.
4. Evaluate if there are new environmental conditions and

model them as described in step 2;
5. If new elements were identified, assign a code for each

new element.
The hazard analysis requires the definition of system

requirements and constraints necessary to eliminate or
mitigate the hazards and therefore to increase the system
safety. In the next section, we describe the step to represent
this information.

2.5 Step 5: Identify and model the safety

requirements

Our focus in this step of our method is to capture the
safety requirements that should be able to eliminate or
mitigate a hazard. We rely on the AND/OR refinements of i*
to model these elements.

5) Guidelines for modeling the safety requirements in i*

 In the previous steps, we modeled the hazards, their

causes, and environmental conditions as goals and related
them with AND/OR refinements. With this modeling we
represent all the situations we want to avoid in order to
develop a safe system, similarly to the approach adopted by
Lamsweerde [22] to model anti-goals related to security. In
this step, we relate the hazards, their causes and
environmental conditions with the safety requirements by
using the AND/OR refinements of i* language considering
the following guidelines:
1. Represent the safety requirement as a task element.
2. Evaluate if the hazard (goal) has an environmental

condition (subgoal):
2.1. If it does not have, associate the new task created

directly with the hazard using an OR-refinement.
2.2. If the hazard has environmental conditions:

2.2.1. If the new task is a means to mitigate all
environmental conditions, connect the new
task with the hazard (parent goal) using
AND-refinement;

2.2.2. If the new task is a means to mitigate some
(not all) environmental conditions, connect
the new task with each environmental
condition using OR-refinement;

2.2.3. If the new task is not a means to mitigate any
environmental condition, but it is a strategy
to mitigate the hazard, connect the new task

with the hazard (parent goal) using AND-
refinement.

3. Add new dependency relationships to represent the
safety requirements if necessary;

4. Assign a code for each safety requirement identified for
purpose of contributing for the traceability information.

i* good practices, for example [27][30], can be adopted

to model such information and to address situations not cited
in this paper. After modeling the accidents, hazards,
environmental conditions, control flaws and the safety
requirements, the next step is to evaluate the safety
modeling.

2.6 Step 6: Evaluate the safety modeling

The final step of our method is to analyze if we modeled
the safety concepts needed at this early safety analysis. It is
performed checks whether the safety concepts and
relationships are presented in the specification. We present
some guidelines to assist the requirements engineer in this
task.

6) Guidelines for evaluating the generated models

• Verify if all accidents have at least one hazard;
• Verify if there is any cause of hazard or

environmental condition missing;
• Verify if every hazard has at least one safety

requirement;
• Verify if there is any component with an interaction

missing in the safety control structure.
After such preliminary evaluation, a detailed and

rigorous evaluation should be performed by safety engineers.
In the next section, we will use our SARSSi* method to
model and analyze a case to show the utility of our method.

3. SARSSI* applied in an Insulin Infusion Pump

The safety of insulin infusion pumps (IIP) has been one
of the main concerns in health care domain since in the
analysis of incidents involving these equipments, medical
device regulators concluded that two of the major factors
contributing to insulin infusion pump failures were software
defects and user interface issues [12].

Modern insulin pumps depend on software for new
features. Software is increasingly responsible for safety
functions such as dosage control, interpreting user input and
providing display output, and mitigating certain hazards
through alarms and alerts [11]. We agree with Zhang et al.
[11] that implementing safety requirements using model-
based methods may reduce design/implementation flaws in
insulin pump development and evolutionary processes,
therefore improving overall safety of insulin pump software.

3.1 Sources of information

Unfortunately, no automatic tools exist for identifying
hazards. It takes domain expertise and depends on subjective

evaluation by those constructing the system. Accordingly,
the HA provided in this paper regarding the IIP is based on
the following sources of information:

• Domain knowledge from the authors;
• User manual of insulin infusion pumps available in

the market;
• Insulin infusion pump requirements specification;
• Papers regarding a protocol previously developed [8]

and lessons learned in previous analysis [9];
• Recommendations on insulin infusion pump design,

and previous hazard analysis of insulin infusion
pumps found in the literature [11][12][13].

The motivation for the Brazilian company to develop a low-
cost IIP is the absence of companies in Brazil developing
such device [8][9]. The system goal is to provide safe and
effective treatment for people suffering from Diabetes
Mellitus (DM1) and to enhance the long-term health of the
patients. In the next sections, we outline the application of
the proposed method in the IIP project.

3.2 Step 1: Identify and model the accidents

Some accidents than can occur due to the use of the
insulin infusion pump are presented in Figure 2. It just shows
a partial view. We assigned a code for all information with
the purpose of contributing for the traceability information in
future proposals. The actors identified at this step were the
Environment, User, Alarms, Motor Module, Battery, and
Infusion Mechanism.

Figure 2: Partial view of some accidents that can occur

in using the IIP.

3.3 Step 2: Identify and model the hazards, their

causes, and environmental conditions

We used our sources of information to determine the
hazards, their causes as well as the environmental conditions
that contribute to accidents. For example, the User actor
depends on the Infusion Mechanism actor for A1. Avoid
incorrect treatment (accident). To achieve this goal, Infusion
Mechanism should mitigate the hazard H1. Avoid an

overdose. This hazard will not occur if the cause TC1.Do not
have free flow is satisfied. This goal is satisfied if all
subgoals that represent the environmental conditions
associated with this cause of hazard is satisfied.

Examples of conditions associated with the free flow are:
• Valves in the delivery path are broken (TC.1.C1);

• Air pressure within the pump is much lower/higher than
ambient air pressure (TC.1.C2);

• Pump is positioned much higher than the infusion site,
causing unintentional drug flow (TC.1.C3);

• Delivery path is damaged, creating a vent on the path
that allows unintentional gravity flow (TC.1.C4); and

• Large temperature changes causing a mismatch
between drug reservoir volume change and insulin
density change (TC.1.C5).

The modeling of the hazard overdose, free flow as a
cause of this hazard and the associated environmental
conditions are illustrated in Figure 3. Finally, the SD and SR
models were updated with the new actors and dependencies
identified in this step.

Figure 3: Partial view of the hazard overdose, causes,

environmental conditions and safety requirements.

3.4 Step 3: Determine and model the safety

hierarchical control structure

From the SD and SR models, we obtained the safety
hierarchical control structure of the IIP, following the
guidelines of section 2.3, and it is illustrated in Figure 5. We
represented the actors of the SD model as components of the
control structure and we decomposed the system into its
constituent sub-components: syringe plunger, catheter
(tube), reservoir, display (interface), device data recorder
(flash memory), microcontroller. We also decomposed the
software module component into sub-modules: Motor
Module, Business, Display, Main, State-view, and Timer. The
information about the decompositions of the components
were extracted from the sources of information presented in
Section 3.

The dependency relationships of the SD model were
represented as interactions among components and we also
specified the interactions between the system and its sub-
components that directly communicate with it.

The control structure diagram in STPA may have four
components: controller (automated/human), actuator,
controlled process, and sensors. In this case study, we did not

include any sensor component such as pressure sensors (up
or down) which can detect when the syringe is empty or
when the patient’s vein is blocked. Since these sensors are
defined in the design phase and we are specifying the system
at requirements level, it is not the scope of the method to
describe sensors at this stage of analysis.

Figure 4: The safety hierarchical control strcuture of infusion pump.

3.5 Step 4: Identify possible control flaws

In this step, we evaluated if control flaws were not
detected by analyzing the causes of the hazards specified as
well as in the safety hierarchical control structure. An
example of a serious control flaw in the insulin infusion
pump would be not controlling the timer. This flaw could
originate incorrect treatment for the user (patient) since it is
used to control the amount of insulin he/she will receive. If
control flaw are detected, the engineer should represent them
as hazards and return to step 2.

3.6 Step 5: Identify and model the safety

requirements

From the hazards, their causes, and environmental
conditions, a set of safety requirements were derived to
prevent them. For example, considering the H.1 Avoid an
overdose hazard and one of its causes that is the Free flow
(TC.1) illustrated previously. Some safety requirements to
mitigate them can be the operation of the pump within a
temperature range of x°C to y°C, and Manage reservoir
volume (see 00). They should be described in i*, following
the guidelines of Step 5.

3.7 Step 6: Evaluate the system safety

We performed the evaluation of the generated i* models.
We checked the SD and SR models for syntax and modeling
errors and we ensure that the accidents have at least one
hazard; every hazard have at least one safety requirement;

and we believe that the safety relevant interactions among
the components of the safety hierarchical control necessary
were specified. As a problem inherent of software
development, problems may be detected in the later stages of
system development. However, it is important to note that
this is an iterative method; hence, if some information is
missing, the steps can be performed as much as necessary
until the models are complete.

We conducted a comparative analysis among other
specification methods of safety requirements: SafeUML
[23], an UML Profile [24], and SafeML [21]. We analyzed
the methods using 20 criteria classified in four groups:
Modeling, Guidelines, Analysis, and Tool. The results are
presented in the next section.

4. Related work and Comparative analysis

The modeling group represents the features related to

specification of important safety concepts addressed by
SARSSi*, such as hazards, environmental conditions, safety
functional requirements, system goals, that should be
addressed by RE.

The Guidelines group describes if the method has some
mechanism to guide engineers during safety analysis. The
third group supports different types of analysis: safety
analysis (backward or forward), trade-off analysis and
communication among teams. Finally, the last group gathers
features that tools used in these methods should support such
as Generation of documentation and reports from the system

model, Language consistency checker, ability to relate
language elements with external resources, and maintenance
of consistency among the multiple models and views. We

assigned Y (yes) if the method satisfies the criterion and N
(No) if it does not satisfy. The results are listed in Table 1.

Table 1: Results of the comparative analysis among the proposed method, safeuml, umlprofile, and safeml.

Group Criterion SARSS
i*

SafeU
ML
[23]

UML
Profile

[24]

SafeML
[21]

1

Modeling

Modeling of causes of hazards Y Y Y Y

2 Modeling of environmental conditions Y Y Y Y

3 Modeling of Safety Functional Requirements Y Y Y Y

4 Representation of system goals Y N Y Y

5 Allow to represent the relationships among hazards, their causes, the
environmental conditions and the safety requirements in a graphical form

Y Y Y Y

6 Support of different types of hazards Y N N N

7 Different levels of abstraction Y Y Y Y

8 Extend the language N Y Y Y

9 Specification Language i* UML UML SysML

10

Guidelines

Guidelines to derive safety requirements Y N N N

11 Guidelines to support hazard analysis Y N N N

12 Structured process for documenting the hazard analysis Y N N N

13

Analysis

Backward (B) and Forward (F) analysis F/B F/B B B

14 Support trade-off analyses Y N N N

15 Contribute to communication amongst RE and safety teams Y Y Y Y

16

Tool

Tool support Y Y Y Y

17 Generation of documentation and reports from the system model N Y Y Y

18 Language consistency checker Y Y Y Y

19 Elements can be related to the external resources N Y Y Y

20 Maintain consistency among the multiple models and views Y Y Y Y

All methods have tool support to model the safety concepts,
which is fundamental for their adoption. Our method is the
only one that does not extend the language and therefore all
tools that support i* [16] can be used, for instance OpenOME,
OME, and Pistar1. Moreover, SARSSi* is the only method that
provides a structured process for documenting the hazard
analysis and guidelines to derive safety requirements (Section
2.5).

SafeUML aims to model design elements (out of scope of
SARSSi*) such as implementation, behavior, and interface
elements. Therefore, the concepts necessary in early safety
analysis are not addressed. An alternative is use SARSSi* and
SafeUML together in different stages of development.

SafeML is a profile for SysML language that has more
safety concepts to be specified at the RE phase compared to
SafeUML and our method. However, its broader scope makes
it more difficult to use in early safety analysis by
unexperienced stakeholders. Finally, an UML Profile focuses
in structuring arguments rather the specification of hazards and

1 https://www.cin.ufpe.br/~jhcp/pistar/tool/#

safety-related information, neither consider the requirements of
safety standards.

The method was applied in a real case study. All sources of
information regarding insulin infusion pumps used in this paper
are available in the literature and were properly cited (see
section 3). Therefore, we provided enough information to
researchers that support the full or partial independent
verification or replication of the claimed contributions.

In the low-cost IIP, using i* we came up with a very
different view of the hazards, their causes and safety
requirements. Since this language was proposed to be used
early in the RE process, we argue that it is adequate to model
the results of a preliminary HA. We found this language to be a
good fit for capturing the accidents, hazards, their causes,
environmental conditions as well as safety requirements and
model them in the SD and SR models. We did not encounter
challenges that would indicate an inadequacy in the expressive
power of i* language for hazard analysis, nor did we find that
i* made the design more complex than necessary.

Furthermore, it is possible to generate behavioral models
for adaptive [18] and context-sensitive systems [19] from goal-
oriented models such as i*. Since our method relies on i*, it

supports trade-off analysis [20] that can be conducted to
evaluate the impact of the different hazards and their causes in
the satisfaction of safety requirements. Moreover, such analysis
contributes to risk analysis.

5. Conclusions and further research

Traditional HA techniques are limited by a focus on failure
events and the role of component failures in accidents; they do
not account for component interaction accidents, the complex
roles that software and humans are assuming in high-tech
systems, the organizational factors in accidents, as well as the
indirect relationships among events and actions required to
understand why accidents occur [1].

In this context, the early consideration of safety concerns in
the RE and design processes is a challenging task in industry.
We aim to reduce this gap with the novel SARSSi* safety
requirements specification method based on STAMP/STPA
and i* language proposed in this paper. It enables to analyze
system safety in the RE phase based on the use of STPA and i*
language. The combination of STPA and i* language is novel
and we advocate that is useful in practice, and can represent a
contribution in the safety-critical software industry.

In our method, we modeled accidents, hazards, their
causes, and environmental conditions as goals and related them
with AND/OR refinements. With this approach of modeling in
early analysis, we represent all situations we want to avoid in
order to develop a safe system, similarly to the approach
adopted by Lamsweerde [22] to model anti-goals related to
security.

As future works, we envision, besides applying the method
in other real cases, the proposal of traceability relationships as
well as a tool to fully support the application of our method.
We aim to develop a plugin for the pistar tool to support our
method. One useful feature of this tool would be the generation
of documentation and reports from i* models. Moreover, a
controlled experiment to compare costs, understanding and
usability of the specification of safety requirements in i* as
proposed in our method with the related works may be
performed.

ACKNOWLEDGMENT

We would like to acknowledge that this work was
supported by the KKS foundation through the S.E.R.T.
Research Profile project at the Software Engineering Research
Lab, Blekinge Institute of Technology.

REFERENCES

[1] N. Leveson, Engineering a safer world: Systems thinking applied to
safety. Mit Press, 2011.

[2] N. Leveson, “A new accident model for engineering safer systems”, Saf.
Sci. 42 (4), 2004, pp. 237–270.

[3] J. Vilela, J. Castro, L. E. G. Martins, T. Gorschek.. Safety Practices in
Requirements Engineering: The Uni-REPM Safety Module. IEEE
Transactions on Software Engineering, 2018.

[4] K. Kazaras, K. Kirytopoulos, A. Rentizelas, “Introducing the STAMP
method in road tunnel safety assessment”, Safety science, 50(9), 2012,
pp. 1806-1817.

[5] J. Vilela, J. Castro, L. E. G. Martins, T. Gorschek, Requirements
communication in safety-critical systems. In: Workshop on
Requirements Engineering (WER), 2019.

[6] J. Vilela, J. Castro, L. E. G. Martins, T. Gorschek, Integration between
Requirements Engineering and Safety Analysis: A systematic literature
review. In: Journal of Systems and Software, vol. 125, 2017, pp. 68–92.

[7] Tae-eun Kim, S. Nazir, K. I. Øvergård, "A STAMP-based causal
analysis of the Korean Sewol ferry accident." Safety science 83, 2016,
pp. 93-101.

[8] L. E. G Martins, T. de Oliveira, “A case study using a protocol to derive
safety functional requirements from Fault Tree Analysis”, International
Requirements Engineering Conference (RE), 2014, pp. 412-419.

[9] L. E. G. Martins, H. de Faria, L. Vecchete, T. Cunha, T. de Oliveira, D.
E. Casarini, J. A. Colucci, “Development of a Low-Cost Insulin Infusion
Pump: Lessons Learned from an Industry Case”, International
Symposium on Computer-Based Medical Systems, 2015, pp. 338-343.

[10] E. Yu, “Social modeling and i*”, Conceptual Modeling: Foundations
and Applications, Lecture Notes in Computer Science, vol. 5600, 2009,
pp. 99–121.

[11] Y. Zhang,P. L. Jones, R. Jetley, “A hazard analysis for a generic insulin
infusion pump”, Journal of diabetes science and technology, 4(2), 2010,
pp. 263-283.

[12] P. Masci, Y. Zhang, P. Jones, H. Thimbleby, P. Curzon, “A generic user
interface architecture for analyzing use hazards in infusion pump
software”, OASIcs-OpenAccess Series in Informatics, vol. 36. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[13] Y. Zhang, R. Jetley, P. L. Jones, P. L., A. Ray, “Generic safety
requirements for developing safe insulin pump software”, Journal of
diabetes science and technology, 5(6), 2011, pp. 1403-1419.

[14] E. Sikora, B. Tenbergen, and K. Pohl, “Industry needs and research
directions in requirements engineering for embedded systems,”
Requirements Engineering, vol. 17, no. 1, 2012, pp. 57–78.

[15] J. Whitehead, “Collaboration in software engineering: A roadmap.”
FOSE, vol. 7, 2007, pp. 214–225.

[16] I* Wiki. Available at:http://istar.rwth-aachen.de/tiki-
index.php?page=i*+Guide.Acessed in: January, 31st , 2017.

[17] Y. Wang, S. Wagner, “Towards applying a safety analysis and
verification method based on STPA to agile software development”,
inProceedings of the International Workshop on Continuous Software
Evolution and Delivery, 2016, pp. 5-11.

[18] J. Pimentel, J. Castro, “Designing adaptive systems”, in: Proceedings of
the Eighth International i* Workshop (istar), 2015, pp. 91–96.

[19] J. Vilela, J. Castro, J. Pimentel, “A systematic process for obtaining the
behavior of context-sensitive systems”, in Journal of Software
Engineering Research and Development, 4(1), 1, 2016.

[20] J. Horkoff, E. Yu, “Interactive goal model analysis for early
requirements engineering”, inRequirements Engineering, 21(1), 2016,
pp. 29-61.

[21] G. Biggs, T. Sakamoto, T. Kotoku, “A profile and tool for modelling
safety information with design information in SysML”, in Software &
Systems Modeling, 15(1), 2016, pp. 147-178.

[22] A. V. Lamsweerde, “Elaborating security requirements by construction
of intentional anti-models”, in: International Conference on Software
Engineering (ICSE), 2004, pp. 148–157.

[23] G. Zoughbi, L. Briand, Y. Labiche, “Modeling safety and airworthiness
(RTCA DO-178B) information: conceptual model and UML profile”,
Software & Systems Modeling, v. 10, n. 3, 2011, pp. 337-367.

[24] J. F. Briones, M. A de Miguel, J. P. Silva, A. Alonso, “Application of
safety analyses in model driven development”, IFIP International
Workshop on Software Technolgies for Embedded and Ubiquitous
Systems. Springer Berlin Heidelberg, 2007, pp. 93-104.

[25] J. Vilela, J. Castro, L. E. G. Martins, T. Gorschek. Specifying Safety
Requirements with GORE languages. In: Proceedings of the 31st
Brazilian Symposium on Software Engineering. ACM, 2017. p. 154-
163.

