
Identifying Evidences of Computer Programming Skills
Through Automatic Source Code Evaluation

Andres J. Porfirio1,2, Roberto Pereira1 (advisor), Eleandro Maschio2 (coadvisor)

1Departamento de Informática – Universidade Federal do Paraná (UFPR)
Curitiba – PR – Brasil

2Coordenação do Curso de Tecnologia em Sistemas para Internet
Universidade Tecnológica Federal do Paraná (UTFPR)

Guarapuava – PR – Brasil

{andresporfirio,eleandrom}@utfpr.edu.br, rpereira@inf.ufpr.br

Abstract. This research is contextualized in the teaching of computer program-
ming. Continuous assessment of source codes produced by students on time is
a challenging task for teachers. The literature presents different methods for
automatic evaluation of source code, mostly focusing on technical aspects. This
research presents the A-Learn EvId method, having as the main differential the
evaluation of high-level skills instead of technical aspects. The following results
are highlighted: updating the state of the art through systematic mapping; a set
of 37 skills identifiable through 9 automatic source code evaluation strategies;
construction of datasets totaling 8651 source codes.

Resumo. Esta pesquisa é contextualizada no ensino de programação de com-
putadores. Avaliar os códigos fonte produzidos pelos alunos de forma contı́nua
e em tempo hábil é uma tarefa desafiadora para os professores. A literatura
apresenta diferentes métodos para avaliação automática de código fonte, em
sua maioria focando em aspectos técnicos. Esta pesquisa apresenta o método
A-Learn EvId, tendo como principal diferencial a avaliação de habilidades de
alto nı́vel ao invés de aspectos técnicos. Destacam-se os seguintes resultados:
mapeamento sistemático para atualização do estado da arte; um conjunto de 37
habilidades identificáveis por meio de 9 estratégias automáticas de avaliação
de código fonte; construção de bases de dados totalizando 8651 códigos fonte.

1. Introduction
Computer programming is one of the very first topics in Computer Science courses and,
sometimes, one of the most complex from students’ point of view [Ullah et al. 2018].
Learning how to program computers requires students to understand a new set of concepts
and to develop new thinking strategies very different from what they are used to.

Research and Development of computer programming teaching support tools is a
widespread topic in the literature, typically aiming to provide resources to support teach-
ers’ activities. Among these activities, two of the major difficulties faced are assessing in-
dividual programming exercises [Souza et al. 2016] and providing individualized timely
feedback [Ihantola et al. 2010, Ullah et al. 2018].

Assessing large amounts of source codes developed by a large num-
ber of students is a complex and exhausting task for teachers [Ullah et al. 2018,

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

01DOI: 10.5753/cbie.wcbie.2020.01

Rahman and Nordin 2007]. Therefore, investigating methods and developing support
tools is a way to support teachers’ work, and with more resources, they can do a bet-
ter job.

Although the automatic source code assessment has come under inves-
tigation for decades [Liang et al. 2009, Rahman and Nordin 2007, Souza et al. 2016,
Ullah et al. 2018], identifying evidences of computer programming skills is still a
challenge. Several source code aspects can be assessed via different strategies
[Souza et al. 2016], not always automatically possible, and such a diversity of aspects
leads to a disperse literature where numerous methodologies are applied to problem-
specific scenarios.

From a systematic literature mapping it was found many works dealing with auto-
matic assessment, but attempts to do this with a conceptual focus are rare as the majority
focuses only on technical aspects such as functional correctness [Jackson and Usher 1997,
Morris 2003] and error detection [Wilcox et al. 1976, Ahmed et al. 2018]. Initial pro-
gramming courses, however, usually have their syllabi focused on concepts and desired
skills, not on technical aspects, which are often conveyed through classes and evaluated
in specific situations where students are supposed to succeed only if they have mastered
certain programming skill.

For this thesis, the definition of skill is grounded in DeKeyser’s skill acquisition
theory [VanPatten and Williams 2015, p. 95], which accounts for how people progress
in learning skills. The theory holds that knowledge is initially acquired by the appren-
tice, who subsequently starts to manifest it through behavioral changes. In the computer
programming context, we consider that students acquire knowledge through learning con-
cepts, and later manifest it by applying different programming resources in source codes.
Therefore, we consider that behavioral changes are marked by using previously unre-
ported programming resources, thus suggesting evidence of new skills development.

When it comes to automatic source code assessment, [Hettiarachchi et al. 2013]
presents two types: knowledge-based and skill-based. Knowledge-based assessment is
described by the authors as a simplified form of assessment, usually easy to apply, but
with a limited scope that may lead to just a quiz of facts about the area of study. Skills-
based assessment, in turn, is described as more authentic and capable to assess higher-
order cognitive skills, however, hard to apply. Also, knowledge-based assessment is
related to simple aspects and rarely give any insight into the thought process students
used to elaborate their responses (analogous to technical aspects evaluation previously
mentioned), while skills-based assessment can be applied to evaluate high-level cognitive
skills [Hettiarachchi et al. 2015].

The central problem addressed in this research is focused on the teacher’s point
of view, being characterized as the challenge of providing assessment of the students’
source codes in a continuous and timely manner and, with this, identify manifestation of
new programming skills. Therefore, the main objective of this research is to investigate
a method for the automatic and continuous evaluation of programming skills via source
code analysis. To achieve the main objective, the following activities were established:

• To identify the state of the art and elaborate a literature mapping;
• To identify programming skills candidate to automatic evaluation;

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

02

• To identify a programming skill-set able to be automatically evaluated;
• To investigate strategies to automatically evaluate the identified skills;
• To implement the strategies as algorithms that receive student source codes as

input and returns the identified skills as output;
• To implement a learner model to represent student knowledge based on a prede-

fined skill-set;
• To apply strategies results as input data to feed the learner model;
• To provide resources to track student progress through the learner model; and
• To evaluate the proposed method regarding its automatic evaluation capacity.

2. State of Art

A systematic literature mapping1 was conducted to identify what aspects of source code
have been evaluated automatically, and what strategies have been adopted in literature.
Based on 126 papers selected from databases ACM, IEEE, Scopus, Scielo and CEIE,
our analysis revealed 43 different aspects of source code identified automatically via 25
different strategies.

The literature mapping revealed different attempts to use automatic strategies for
source code evaluation. Data revealed that the most popular aspects addressed in litera-
ture are the ones dealing with automatic evaluation of source code as a whole, pointing
to generic results such as Functional Correctness assessment and detection of Semantic
and Compilation Errors. Regarding the strategies employed in the automatic assessment
process, we identified Test Cases and Unit Tests as popular approaches. The majority of
studies focused on applying one (or a few) strategy, providing specialized solutions to
evaluate specific source code aspects. Using hybrid approaches to mix different strategies
and evaluate multiple code aspects simultaneously was identified as a gap in the literature.

The systematic mapping suggested that the more aspects are evaluated in a source
code the richer feedback possibilities could be and, consequently, more clues about stu-
dents’ programming skills could be provided. Results suggested that, although special-
ized solutions are adequate for specific contexts, methods combining multiple strategies
to evaluate multiple aspects and to provide detailed and holistic feedback is a research
gap. The A-Learn EvId method conceived in this thesis contributes to address this gap,
improving our capacity to identify evidences of students’ programming skills by automat-
ically analyzing the source code they produce.

3. A-Learn EvId: Automatic Learning Evidences Identification Method
The Automatic Learning Evidences Identification (A-Learn EvId) method adopts a hy-
brid approach that employs static and dynamic source code analysis strategies to identify
learning evidences, valuate programming skills, and feed a learner model. To conceive
the method we take advantage of literature experiences regarding aspects automatically
identifiable, strategies employed, as well the results and learned lessons about limitations
and possibilities.

Figure 1 presents a scheme for the method. Source code serve as input to eval-
uation, where different strategies are applied to identify evidences used for feeding a

1Details and results from the systematic mapping are under review in an international journal paper.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

03

skill-based learner model (output). Evidences can be identified from single or multiple
strategies, as well as from inference through combinations of previously evaluated skills.

learner model

source code

#include <stdio.h>

int main()
{
 printf("hello");
 return 0;
}

...

skill 1

strategy

strategy

evidence

strategy

evidence

skill 2

strategy

evidence

skill N

strategy

evidence

Input Evidences Identification Output

skill 3

Inference

evidence

Figure 1. A-Learn EvId Method overview.

Figure 2 presents examples of skills and their respective valuation sources (when
automatically identifiable). Skills are valuated by one or more evidences; evidences can
be implemented with one or more automatic strategies; and, finally, each strategy analyses
source codes and returns an evaluation regarding certain programming aspects (e.g., a
percentage of success regarding the use of a specific programming resource).

Skills Evidences Strategies Valuation

analysis (not implemented)

structuring and
composition syntax error check compilation analysis

test cases
[boolean]
has error: 0% | no error: 100%

effectuation

structuring and
composition inference [value from prev. skill]

functional correctness
check test cases [float]

tests passed / tests executed

Figure 2. Skills valuation sample.

Previous literature mentions the existence of desired skill sets related to
training students in programming. Research from [Pimentel and Direne 1998] and
[Maschio 2013], as well as real world programming courses syllabus analysis, were used
to define a Full Skill Set containing aspects candidates to be implemented via strategies
for automatic skills identification. Those aspects were then classified regarding their po-
tential and priority for identification through automatic source code analysis, results are
shown in Figure 3.

For each aspect representing a skill, automatic strategies were defined and imple-
mented. Detecting evidences for different skills requires different strategies, some with

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

04

output

input

types of literals

variables

arithmetic expressions

relational expressions

boolean expressions

multiple selection conditional

simple and compound conditionals

infinite loops

counted loops

pre evaluated

post evaluated

arrays

matrices

functions

structuring and composition

effectuation

attribution

constants

division by zero

nesting

nesting (2)

simple instructions

input vs output

types compatibility

variables vs constants

compound expressions

control structures

expressions in control structures

conditional structures

simple and compound vs multiple selection

nesting vs pipelining

repetition structures

conditional loops

conditional loops vs counted

nesting vs pipelining (2)

algorithm

analysis

value changes

loss of value

pipelining

counters and

accumulators

pipelining (2)

Automatically Identifiable Challenging/Not Feasible

Full Skill Set

Inference

Priority Complementary

Specific Strategy

Figure 3. Skills categorized by their potential and priority for automatic identifi-
cation.

easier automatic detection and others impractical. Considering the automatically identi-
fiable skills previously defined, 9 of the 25 strategies from the systematic mapping were
selected to compose the method: AST (Abstract Syntax Tree), Code Mutation, Compila-
tion Analysis, Debug Analysis, Execution Traces Analysis, Parser, Regular Expressions,
Software Metrics and Test Cases. Hybrid systems employing two or more of the selected
strategies were also applied. Strategies were selected according to: (1) source code as-
pect it was capable to analyze; (2) type of analysis (static or dynamic); (3) availability of
implementation documentation; and (4) adaptation possibility.

Finally, identified evidences are used to feed the learner model. For this research,
the learner model is established to organize and present characteristics representing skills,
developed or not by students, necessary for proper execution of programming tasks. Our
learner model is based on the Overlay Graph presented by [Maschio 2013], oferring ad-
ditional features:

• Skill visualization detailed per source code: ability to present details, in a source
code or even in a code fragment, about where a student started showing a specific
skill;
• Skill valuation on multiple source codes: ability to identify skills in multiple

source codes (e.g., multiple exercises submissions) and apply a decision criterion
to globally valuate students’ skills;
• Timeline based exercises selection: considering multiple source codes evaluation,

it allows to select specific source codes for analysing skills in specific program-
ming topics/exercises and, with this, monitor students’ progress;
• Uncertainty treatment: evolving from an Overlay Graph [Maschio 2013] to a

Dynamic Bayesian Network to deal with unexpected situations possibly found
in students’ source codes, e.g., importing incompatible libraries, using unsup-
ported/legacy syntax, submitting source code with incompatible encoding, and
using operating system dependent resources.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

05

4. Experiments and Results
Seven experiments were conducted to investigate the capabilities of the A-Learn EvId
method. Experiments were carried out both in controlled scenarios (source codes specif-
ically designed for testing purposes) and in real scenarios (dataset built from real-world
exercise solutions, formally specified and collected). Table 1 summarizes our experi-
ments according to the IMRaD format [Wu 2011], where the structure is represented by
four questions: why experiments were elaborated? (Introduction); how experiments were
characterized? (Method and Materials); what we discovered? (Results); and, so what
does it mean? (Discussion). Dataset size (number of source codes) is shown in the first
column.

Table 1: Experiments summary (IMRaD structure).

Experiment Why? How? What? So What?
First (Pilot
Test) (1
source)

To investigate pre-
liminary automatic
source code analy-
sis strategies.

AST and parser
strategies were
applied to a refer-
ence source code,
results were then
compared to human
evaluation.

AST and parser
strategies can
detect learning evi-
dences of constants
programming topic.

Strategies pre-
sented good results
on reference source
code. Application
on student-made
source codes still
needed.

Second (29
sources)

To investigate pre-
liminary automatic
source code analy-
sis strategies in real
scenario.

AST and parser
strategies were
applied to student-
made source codes,
results were then
compared to human
evaluation.

AST and parser
strategies can
detect learning evi-
dences of variables
and constants pro-
gramming topics.
Limitations were
detected.

Experiment sug-
gests automatic
strategies can be
feasible. Extended
tests covering more
programming top-
ics and strategies
still needed.

Third (Pilot
Test) (29
sources)

To investigate
static and dy-
namic automatic
strategies to detect
evidences of learn-
ing of input/output
commands with
different data
types.

An experimental
environment was
built with four au-
tomatic strategies.
An artificial dataset
was employed.
Results were then
compared to human
evaluation.

92.39% of human
cataloged evi-
dences were also
identified by au-
tomatic strategies.
Implementation
limitations were
detected.

Static and dynamic
approaches were
successfully ap-
plied to detect
evidences. Strate-
gies worked well
on extended pro-
gramming topics
set.

Fourth (113
sources)

To investigate if
strategies from
the third experi-
ment can also be
accurate in real
scenario.

The third experi-
ment was replicated
with student-made
source codes ex-
tracted from a real
STI.

Evidences identifi-
cation capabilities
in real environment
were observed to
be similar to the
controlled scenario.

Strategies were
successfully ap-
plied for detecting
learning evidences,
but implementation
limitations still
exist.

Fifth (142
sources
mixing data
from Third
and Fourth
experi-
ments)

To investigate
using automat-
ically identified
evidences as data
source for feeding
learner model.

A Dynamic
Bayesian Net-
work was fed with
automatically de-
tected evidences.
An empiric analysis
was conducted to
detect changes in
the model.

Student model
changes accord-
ing to evidences
inserted in the
network.

Detecting ev-
idences from
multiple source
codes and filtering
them in the network
permits monitoring
students’ skills
progress.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

06

Experiment Why? How? What? So What?
Sixth (3860
sources
+ 101
reference
solutions)

To investigate
evidence detection
and students’
progress monitor-
ing considering
skills commonly
evaluated in real
programming
courses.

A priority skill-set
was established
through syllabi
analysis, exercise
lists were applied
to real students.
Students’ progress
were compared
between exercise
lists.

Student progress
between exer-
cise lists can be
monitored and it
was possible to
identify when each
skill began to be
manifested.

Detecting (the lack
of) progress can
offer useful insights
for both teachers
and ITS as well as
for students and
their self-learning
monitoring.

Seventh
(4434
sources +
84 reference
solutions)

To demonstrate
skill-based as-
sessment using
automatic strate-
gies as means of
identifying func-
tionally correct
but conceptually
incorrect solutions.

Desired skills were
defined for each
programming ex-
ercise and then
compared to stu-
dents automatically
detected skills.

Skill-sets com-
parison indicated
source codes that
deviated from
reference solutions.

Skill-based assess-
ment proved to be
a valuable resource
for locating concep-
tually incorrect so-
lutions built with
subterfuges.

In addition, two highlights are presented regarding the Sixth and Seventh exper-
iments. The Sixth experiment specifically focused on analyzing student progress. Rep-
resenting a more realistic environment, the experiment used a skill set based on topics
commonly covered in real programming courses, showing that student progress can be
monitored (e.g., between one exercise list and another), and that it is possible to identify
when each skill start to be detectable. Figure 4 exemplifies a progress analysis where the
vertical axis represents programming topics coverage and the horizontal axis represents
ten exercise lists. The absence of learning evidence means the student did not submit a
specific list of exercises.

0%

20%

40%

60%

80%

100%

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Conditional Structures Repetition Structures Data Types

Variables Input and Output Operators and Expressions

Vectors Matrices Functions

Figure 4. Example of a single student progress across the ten lists.

Finally, the Seventh experiment investigated the capabilities of skill-based assess-
ment. Situations where subterfuges were used as means to achieve source code’s func-
tional correctness have been identified. Automatic search for learning evidence consider-
ing different programming skills has proved to be an interesting and effective method, pro-
viding indicative of potentially incorrect solutions where manual assessment is required.
Figure 5 exemplifies the experiment with a sample solution to the following problem: read

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

07

an integer vector and a floating-point vector, each with three positions. Subsequently, tra-
verse the vectors with a single repeating loop and print the sets in parallel (Int1:Float1,
Int2:Float2, Int3:Float3). The assessment output points out the student did not employ
any loop-related resource, solving the exercise in a forced way (with hard-coded vector
indices). This type of solution would be accepted by simpler strategies such as test cases,
but specifications of a desired skills-set (e.g., higher valuation of loop-related concepts)
prevents the solution from achieving a good score and indicates it for manual inspection.

#include <stdio.h>

int main (){
 int ua[3];
 float f[3];
 int valor_1;

 scanf("%d %d %d %f %f %f",
 &ua[1], &ua[2], &ua[3],
 &f[1], &f[2], &f[3]);

 printf("%d:%.2f %d:%.2f %d:%.2f",
 ua[1],f[1],ua[2],
 f[2], ua[3], f[3]);

 return 0;
}

student source
Assessment Output

Figure 5. Source code skill-based assessment inspection.

5. Contributions

This research produced conceptual, methodological and technical contributions. The
main ones are highlighted:

• The Systematic Literature Mapping provides an updated and rigorous panorama
of automatic programming source code evaluation, presenting categorization
schemes and important concepts, therefore informing this thesis and future re-
search;
• A set of 37 standardized computer programming skills relevant to automatic iden-

tification;
• A set of 9 strategies, as well as their implementation and evaluation, responsible

for automatic identifying skill evidences from students’ source codes;
• A learner model capable of representing students’ knowledge (skills acquired)

identified by the automatic strategies and monitoring knowledge evolution;
• The A-Learn EvId: Automatic Learning Evidences Identification method;
• Seven source code datasets totalling 8651 C-Language programs (8436 from real-

world exercise solutions, formally specified and collected; 215 specifically de-
signed for testing purposes), as well as method and tools sharing2;
• Publications: [Porfirio et al. 2016]; [Porfirio et al. 2017]; [Porfirio et al. 2018].

Papers presenting details and results from the systematic mapping and the seven
experiments with the method are under review in international journals.

2Supplementary data, such as datasets and tools, can be found online at: https://bit.ly/doc ctd.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

08

https://bit.ly/doc_ctd

6. Conclusion

Considering the central problem, the challenge to provide assessment of the students’
source codes in a continuous and timely manner and identify manifestation of new skills,
the A-Learn EvId method was proposed and evaluated. Results showed our method is
promising, being able to automatically evaluate students’ source codes, identifying multi-
ple programming skills. Automatic strategies results were represented through our learner
model, which provided resources for monitoring students’ progress. Therefore, experi-
ments’ results suggest that high-order cognitive skills can be automatically evaluated in
the computer programming context. However, efforts and research expansion still needed
to improve method’s accuracy and reliability.

This research resulted in updating and expanding the state of the art through sys-
tematic literature mapping. Also, the proposal, implementation, and demonstration of
using automated strategies as a means for high-level, skill-based, assessment can be seen
as positive impacts over the existing evaluation methods, especially when employing the
resulting information to monitor the progress of students skills and detect potential con-
cept flaws. Lastly, the contributions extend to the general context of Computer Science,
where the acquisition of programming skills is a crucial activity for the vast majority of
professionals. Thus, the development of resources that support the teaching of this activity
tends to bring benefits and improve this process.

7. Acknowledgment

To professor Alexandre Direne (in memoriam), the initial advisor of this research.

References

[Ahmed et al. 2018] Ahmed, U. Z., Kumar, P., Karkare, A., Kar, P., and Gulwani, S. (2018).
Compilation error repair: For the student programs, from the student programs. In
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering Education and Training, ICSE-SEET ’18, pages 78–87, New York, NY,
USA. ACM.

[Hettiarachchi et al. 2013] Hettiarachchi, E., Huertas, M., and Mor, E. (2013). Skill and
knowledge e-assessment: A review of the state of the art. IN3 Working Paper Series.

[Hettiarachchi et al. 2015] Hettiarachchi, E., Huertas, M., and Mor, E. (2015). E-assessment
system for skill and knowledge assessment in computer engineering education. Inter-
national Journal of Engineering Education, 31:529–540.

[Ihantola et al. 2010] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010). Re-
view of recent systems for automatic assessment of programming assignments. In Pro-
ceedings of the 10th Koli Calling International Conference on Computing Education
Research, Koli Calling ’10, pages 86–93, New York, NY, USA. ACM.

[Jackson and Usher 1997] Jackson, D. and Usher, M. (1997). Grading student programs
using assyst. In Proceedings of the Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’97, pages 335–339, New York, NY, USA.
ACM.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

09

[Liang et al. 2009] Liang, Y., Liu, Q., Xu, J., and Wang, D. (2009). The recent develop-
ment of automated programming assessment. In 2009 International Conference on
Computational Intelligence and Software Engineering, pages 1–5.

[Maschio 2013] Maschio, E. (2013). Modelagem do Processo de Aquisição de Conhec-
imento Apoiado por Ambientes Inteligentes. Tese de doutorado, Programa de Pós-
Graduação em Informática, Setor de Ciências Exatas, Universidade Federal do Paraná
(UFPR).

[Morris 2003] Morris, D. S. (2003). Automatic grading of student’s programming assign-
ments: an interactive process and suite of programs. In 33rd Annual Frontiers in
Education, 2003. FIE 2003., volume 3, pages S3F–1.

[Pimentel and Direne 1998] Pimentel, A. R. and Direne, A. I. (1998). Medidas cognitivas
no ensino de programaçao de computadores com sistemas tutores inteligentes. Revista
Brasileira de Informática na Educaçao (IE), 3:17–24.

[Porfirio et al. 2016] Porfirio, A., Maschio, E., and Direne, A. (2016). Modelagem genérica
de aprendizes com Ênfase em erros na aquisição de habilidades em programação
de computadores. Anais dos Workshops do Congresso Brasileiro de Informática na
Educação.

[Porfirio et al. 2017] Porfirio, A., Pereira, R., and Maschio, E. (2017). Atualização do mod-
elo do aprendiz de programação de computadores com o uso de parser ast. Anais dos
Workshops do Congresso Brasileiro de Informática na Educação, 6(1):1121.

[Porfirio et al. 2018] Porfirio, A., Pereira, R., and Maschio, E. (2018). Inferência de conhec-
imento a partir da detecção automática de evidências no domı́nio da programação de
computadores. Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educação - SBIE), 29(1):1553.

[Rahman and Nordin 2007] Rahman, K. A. and Nordin, M. J. (2007). A review on the static
analysis approach in the automated programming assessment systems. In Proceedings
of national conference on programming 07.

[Souza et al. 2016] Souza, D. M., Felizardo, K. R., and Barbosa, E. F. (2016). A systematic
literature review of assessment tools for programming assignments. In 2016 IEEE 29th
International Conference on Software Engineering Education and Training (CSEET),
pages 147–156.

[Ullah et al. 2018] Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A., Al-Ghamdi, A., and
Saleem, F. (2018). The effect of automatic assessment on novice programming:
Strengths and limitations of existing systems. Computer Applications in Engineering
Education, 26(6):2328–2341.

[VanPatten and Williams 2015] VanPatten, B. and Williams, J. (2015). Theories in second
language acquisition: An introduction. Routledge, second edition.

[Wilcox et al. 1976] Wilcox, T. R., Davis, A. M., and Tindall, M. H. (1976). The design and
implementation of a table driven, interactive diagnostic programming system. Com-
mun. ACM, 19(11):609–616.

[Wu 2011] Wu, J. (2011). Improving the writing of research papers: Imrad and beyond.

IX Congresso Brasileiro de Informática na Educação (CBIE 2020)
Anais dos Workshops do IX Congresso Brasileiro de Informática na Educação (WCBIE 2020)

10

