
SCMTool: A Graphical Tool for Smart Contract Modeling

Gislainy Crisostomo Velasco1, Dionatan Alves Vieira1, Marcos Alves Vieira1,2,
Sergio T. Carvalho1

1Instituto de Informática – Universidade Federal de Goiás (UFG)
Caixa Postal 131 – 74001-970 – Goiânia – GO – Brasil

2Instituto Federal de Educação, Ciência e Tecnologia Goiano (IF Goiano)
76200-000 – Iporá – GO – Brasil

gislainycrisostomo@discente.ufg.br, dionatan03 alves@discente.ufg.br,

marcos.vieira@ifgoiano.edu.br, sergio@inf.ufg.br

Abstract. The development of smart contracts in the Ethereum Virtual Machine
(EVM) can be a complex task, both for experienced and beginner developers.
Understanding these contracts can be challenging for both technical and non-
technical users, due to the difficulty in comprehending the connection between
the elements and resources available, as there is no clear way to visually present
the functionalities of a contract and its relationships. In this paper, we introduce
the Smart Contract Modeling Tool (SCMTool), a graphical tool based on the
Model-Driven Engineering approach, that allows users to specify models that
represent the structure of a smart contract in a simpler and more intuitive way.
The tool was validated using a use case from the NFT industry.

1. Introduction

Blockchain technology has enabled the implementation of smart contracts. However,
the immutability of blockchain technology has significant implications for the develop-
ment of Decentralized Applications (DApps), requiring software developers to imple-
ment a new programming approach. Once the source code of a contract is implemented,
it cannot be modified, which demands a more rigorous development process. As a re-
sult, contract developers are faced with a series of challenges, making the activity com-
plex and error-prone, for both experienced and novice developers [Jurgelaitis et al. 2022,
Ferreira et al. 2020]. This represents a barrier to the formation of new developers in the
field due to the high learning curve [Garamvölgyi et al. 2018, Jiao et al. 2020]. For non-
technical users, understanding contracts can be challenging due to the difficulty in un-
derstanding the connection between elements and available resources, as there is no clear
way to visually present a contract’s functionalities and relationships [Qasse et al. 2021].

To minimize human errors in creating contracts, several authors have sug-
gested the use of software engineering techniques, including Model-Driven Enginee-
ring (MDE) [Ben Slama Souei et al. 2021, Chirtoaca et al. 2020, Guida and Daniel 2019,
Hamdaqa et al. 2020, Santiago et al. 2021]. One of the techniques of MDE is the cons-
truction of graphical models that help stakeholders to better understand the problem do-
main [Viyović et al. 2014]. Therefore, this paper aims to propose the development of a
graphical tool for the development of smart contracts that enables the modeling of the
smart contract through a graphical interface.



The rest of this paper is organized as follows: in Section 2, we present the main
concepts covered in this paper. In Section 3, we present related works and compare them
with this work. Then, in Section 4, we present the SCMTool and its main components. In
Section 5, we present a use case from the NFT industry. Finally, in Secton 6, we present
the final considerations and future work.

2. Background

Smart contracts are a set of programming instructions used to establish agreements in
a decentralized and reliable manner on blockchains [Wang et al. 2019]. The Ethereum
Virtual Machine (EVM) is a platform for executing smart contracts that provides a secure
and reliable environment for the execution of these contracts [Buterin et al. 2014]. In
addition to the EVM, other blockchain platforms such as Hyperledger Besu, EOS, Tron,
Cardano, and Polygon are compatible with the EVM, allowing contracts to be written on
one platform and reused on others, which facilitates the development of DApps.

Model-Driven Engineering (MDE) is a methodology that uses models as pri-
mary artifacts to represent requirements, behaviors, and functionalities of the system
[Seidewitz 2003]. With this approach, technical and non-technical professionals can share
knowledge and communicate more efficiently during software development. MDE makes
use of models, which are abstractions of the system under study, and employs techniques
and tools to transform models into executable code, including code generation, validation,
and model transformations [Seidewitz 2003, Iovino et al. 2012]. Graphical tools can also
be used to assist in the modeling of the system, allowing users to create models visually
without the need for advanced programming knowledge.

3. Related Works

There have been several studies aimed at enhancing the field of smart contract deve-
lopment using various approaches, such as Model-Driven Architecture (MDA), MDE,
Unified Modeling Language (UML) diagrams, Business Process Model and Notation
(BPMN), and others. Of these approaches, BPMN stands out due to its graphical na-
ture, which enables clear and visual modeling of business processes using symbols and
diagrams.

On the other hand, some studies utilizing different techniques require the develop-
ment of an additional graphical tool. For example, the work [Hamdaqa et al. 2020] propo-
ses a metamodel called IContractML for smart contract modeling, along with a graphical
tool for manipulation that utilizes Sirius1. However, due to the limitations of the adopted
reference model, the metamodel may not fully capture all aspects of smart contract cons-
truction. In contrast, we propose a tool that utilizes a high-level metamodel for the cons-
truction of smart contracts for the EVM. Additionally, in [Boubeta-Puig et al. 2021], the
authors present a graphical editor for event-driven smart contracts that uses the Graphical
Modeling Framework (GMF). However, we choose to use Sirius, a more declarative tool.

Block-based programming also has been used in previous studies to enable the
construction of a visual tool where users drag predefined blocks to create smart contracts.

1Sirius is a complete framework that provides resources for developing a fully functional graphical
modeling environment.



For example, the authors of [Guida and Daniel 2019] present a model for contract deve-
lopment that encompasses the concepts of service orientation. The study utilized other
tools, such as Doxity, which generates website documentation from Solidity source code.
Moreover, the work [Merlec et al. 2021] employs block programming to build a contract
creation tool for Hyperledger Fabric. Both studies aim to provide a more user-friendly so-
lution, which is also the motivation of this paper. However, they use different approaches
to achieve this objective.

4. Smart Contract Modeling Tool (SCMTool)
SCMTool utilizes the High-Level Metamodel for Smart Contract (HLM-SC), a
metamodel that allows for high-level declaration of smart contract elements
[Velasco and Carvalho 2022b]. HLM-SC provides a set of components that enable the
representation of smart contracts, including state variables, complex data structures, func-
tions, modifiers, events, errors, and a constructor. These components are represented in
the tool by rectangular shapes, and their relationships are depicted through edges. Figure
1 illustrates SCMTool and its main components.

Figura 1. SCMTool

The contract is modeled in the main area (A), where the user can drag and drop
the available components from the palette (B). The palette contains all the components
that make up the contract, and when a rectangular shape is selected, its properties can be
modified (C). If the modeled contract does not conform to the specifications of the HLM-
SC, errors are displayed in this area (D). The SCMTool has validation rules based on the
specifications of the HLM-SC, so a component can only be dragged onto a rectangular
shape when there is a match with the HLM-SC specification.

Figure 2 illustrates the use of these graphical components. State variables are re-
presented by rectangular shapes, such as certificate (blue color). The variable certificate
uses the complex data structure represented by Certificate (green color). The shape labe-
led mint represents a function (white color) and uses the modifier onlyAuthorizedAddress
(orange color). This modifier throws an error NotAuthorized if the calling address is



Figura 2. The main graphical components and their relationships.

unauthorized (red color). In case of success, the function mint emits the event represen-
ted by the shape CertificateIssued (yellow color). Finally, the constructor (purple color)
initializes the state variable institutionName.

5. Use Case: NFT Contract

The tool validation was performed by modeling an NFT contract. NFTs are uni-
que and non-fungible tokens that can represent both physical and digital items
[Velasco and Carvalho 2022a, Wang et al. 2021]. In a Solidity contract, NFT tokens are
represented by a structure similar to a hash table, where each token has only one owner,
and all transfers of its ownership are recorded on the blockchain through the emission of
an event, enabling its traceability through DApps.

The modeling followed the specifications of the ERC-721 standard2, which defi-
nes the mandatory elements in an NFT contract. In this case, we used the implementation
of the ERC721A contract3, which allows for batch issuance of multiple NFTs in a single
transaction with an optimized operation fee. Figure 3 illustrates the final version of the
modeled contract4.

Figura 3. NFT Contract modeled in SCMTool.

2https://eips.ethereum.org/EIPS/eip-721
3https://github.com/chiru-labs/ERC721A
4For space reasons, the source code of the modeled contract and additional information about the tool

are available for consultation at https://github.com/gislainy/scmtool-short-paper.



The contract described in the tool has eight state variables, four of which are map-
pings highlighted in blue color. The tokenApprovals variable uses the TokenOwnership
structure, which is represented in green color. The constructor initializes the name and
symbol variables, highlighted in purple color. Among the twelve implemented functions,
identified in white color, six of them are view functions, while the other six modification
functions always emit corresponding events, such as the setApprovalForAll function that
emits the ApprovalForAll event, highlighted in yellow color. An event can be used by
more than one function, as is the case with the Transfer event used in both the mint func-
tion and the other transfer functions. Eleven types of errors were modeled in the contract,
highlighted in red color, which are reused in several functions.

6. Conclusion
In this paper, we presented a graphical tool that assists both technical and non-technical
individuals in visualizing the elements of a smart contract clearly. This enables more effi-
cient communication among stakeholders and helps to minimize human errors. Although
the tool presents a high-level specification of smart contract elements, the language used
to represent these elements can be improved with other forms of representation or even
with the creation of a graphical language. In addition to this improvement, our next steps
include conducting an evaluation to assess the quality of the tool.

Referências
Ben Slama Souei, W., El Hog, C., Sliman, L., Ben Djemaa, R., and Ben Amor, I. A.

(2021). Towards a uniform description language for smart contract. In 2021 IEEE
30th WETICE, pages 57–62.

Boubeta-Puig, J., Rosa-Bilbao, J., and Mendling, J. (2021). Cepchain: A graphical model-
driven solution for integrating complex event processing and blockchain. Expert Sys-
tems with Applications, 184:115578.

Buterin, V. et al. (2014). A next-generation smart contract and decentralized application
platform. white paper, 3(37):2–1.

Chirtoaca, D., Ellul, J., and Azzopardi, G. (2020). A framework for creating deployable
smart contracts for non-fungible tokens on the ethereum blockchain. In 2020 IEEE
DAPPS, pages 100–105.

Ferreira, J. F., Cruz, P., Durieux, T., and Abreu, R. (2020). Smartbugs: A framework to
analyze solidity smart contracts. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1349–1352.

Garamvölgyi, P., Kocsis, I., Gehl, B., and Klenik, A. (2018). Towards model-driven engi-
neering of smart contracts for cyber-physical systems. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-W),
pages 134–139.

Guida, L. and Daniel, F. (2019). Supporting reuse of smart contracts through service
orientation and assisted development. In 2019 DAPPCON, pages 59–68.

Hamdaqa, M., Metz, L. A. P., and Qasse, I. (2020). Icontractml: A domain-specific lan-
guage for modeling and deploying smart contracts onto multiple blockchain platforms.



In Proceedings of the 12th System Analysis and Modelling Conference, SAM ’20, page
34–43, New York, NY, USA. Association for Computing Machinery.

Iovino, L., Pierantonio, A., and Malavolta, I. (2012). On the impact significance of meta-
model evolution in mde. J. Object Technol., 11(3):3–1.

Jiao, J., Lin, S.-W., and Sun, J. (2020). A generalized formal semantic framework for
smart contracts. In Fundamental Approaches to Software Engineering: 23rd Inter-
national Conference, FASE 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020,
Proceedings, page 75–96, Berlin, Heidelberg. Springer-Verlag.

Jurgelaitis, M., čeponienė, L., and Butkienė, R. (2022). Solidity code generation from uml
state machines in model-driven smart contract development. IEEE Access, 10:33465–
33481.

Merlec, M. M., Lee, Y. K., and In, H. P. (2021). Smartbuilder: A block-based visual
programming framework for smart contract development. In 2021 IEEE Blockchain,
pages 90–94.

Qasse, I., Mishra, S., and Hamdaqa, M. (2021). icontractbot: A chatbot for smart con-
tracts’ specification and code generation. In 2021 IEEE/ACM 3rd BotSE, pages 35–38.

Santiago, L., Abijaude, J., and Greve, F. (2021). A framework to generate smart contracts
on the fly. In Proceedings of the XXXV Brazilian Symposium on Software Engineering,
SBES ’21, page 410–415, New York, NY, USA. Association for Computing Machi-
nery.

Seidewitz, E. (2003). What models mean. IEEE Software, 20(5):26–32.

Velasco, G. and Carvalho, S. (2022a). Domı́nios, aplicações, desafios e oportunidades
sobre non-fungible tokens (nft): Um mapeamento sistemático da literatura. In Anais
do VII WASHES, pages 41–50, Porto Alegre, RS, Brasil. SBC.

Velasco, G. and Carvalho, S. (2022b). Uma abordagem dirigida por modelo para de-
senvolvimento de contratos inteligentes na ethereum virtual machine. In Anais da X
Escola Regional de Informática de Goiás, pages 106–117, Porto Alegre, RS, Brasil.
SBC.

Viyović, V., Maksimović, M., and Perisić, B. (2014). Sirius: A rapid development of dsm
graphical editor. In IEEE 18th INES 2014, pages 233–238.

Wang, Q., Li, R., Wang, Q., and Chen, S. (2021). Non-fungible token (nft): Overview,
evaluation, opportunities and challenges. arXiv preprint arXiv:2105.07447.

Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., and Wang, F.-Y. (2019). Blockchain-
enabled smart contracts: Architecture, applications, and future trends. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 49(11):2266–2277.


