Safe evolution of smart contracts

Augusto Sampaio', Pedro Antonino?, Juliandson Ferreira',
Filipe Arruda’, A. W. Roscoe*?

!Centro de Informética — Universidade Federal de Pernambuco (UFPE)
Recife, Brazil

2The Blockhouse Technology Limited
Oxford, UK

3Department of Computer Science, University of Oxford
Oxford, UK

4University College Oxford Blockchain Research Centre
Oxford, UK

acas@cin.ufpe.br, pedro@tbtl.com, jef@cin.ufpe.br

fmca@cin.ufpe.br, awroscoe@gmail.com

Abstract. We present a framework that supports the safe deployment and
upgrade of smart contracts based on the design-by-contract paradigm. The
starting point is an interface specification with invariants and pre- and
postconditions for each function. The first deployed smart contract must
conform to this specification. Specification evolution might involve both
changing the data representation as well as extending the interface with new
functions, provided the evolved specification is a refinement of the original one.
Implementation evolution must conform to the corresponding specification. We
report on the applicability of the framework in the verification of smart contracts
that implement some Ethereum standards.

1. Introduction

Smart contracts emerged to play the role of digital contracts on blockchains. As such,
they implement consensual rules that are automatically triggered when some expected
conditions are satisfied. In this way, smart contracts extend the blockchain initial
capabilities by allowing users to program the processing of transactions. As classes in
object orientation, a smart contract has its properties defined by attributes and behaviour
defined by its functions. So the challenges to reason about smart contracts are similar to
those of formal verification of object-oriented programs. Nevertheless, smart contracts
have some additional features (like implicit parameters for senders and receivers, and
persistent states in the blockchain) that make them even more complex to verify.

Needless to say, smart contracts impose a practical demand for verification
strategies and tools since uncovered bugs have given rise to significant financial
losses [Siegel 2016, [Vollmer 2016]. Furthermore, once deployed, smart contracts are
expected to be immutable. In practice, however, such contracts need to be eventually
updated to fix bugs or to perform optimisations with the aim of reducing the execution
cost (like saving gas in the execution of transactions in the Ethereum platform).

Breaking immutability can be minimised with solutions such as the adoption of
the proxy pattern [OpenZeppelin 2018] in Ethereum. Using this pattern, the caller of a
transaction always uses the (fixed) address of the proxy, which itself has a reference to the
current contract it represents. In this way, when the contract needs to be upgraded, only
the attribute value of the proxy that references the contract is changed, but the proxy’s
address invoked by callers remains the same. Yet, relying only on the proxy pattern does
not ensure the preservation of the contract functional behavior after an upgrade.

We build on these ideas to develop a process and framework to ensure that only
smart contracts that conform to their respective interface specifications can be deployed.
Although, in principle, our approach is not inherently bound to any particular smart
contract language or blockchain platform, we focus on Solidity and Ethereum.

In Section [2] we present the proposed framework. In Section [3| we present some
case studies. Finally, in Section [Z_f] we discuss related work, summarise our results and
suggest some topics for future directions.

2. The proposed framework

As an initial step, the framework takes an interface specification (based on the design-by-
contract paradigm [Meyer 1992]]) and an implementation. The specification might have
invariants, and each of its functions is annotated with pre- and postconditions that capture
its behaviour. The first deployed smart contract must conform to this specification. Then
we allow both the specification and the implementation to evolve.

Specification evolution might be in the form of changing the data representation
(possibly changing attributes and their types) or via extending the interface with new
functions. As a proof obligation, the evolved specification must be a refinement of
the original one. Implementation evolution must always conform to the corresponding
specification. In order to provide this flexibility of changing the data representation of
a smart contract, the standard proxy pattern is not suitable, since a proxy holds a fixed
state representation. We then adopt the proxy diamond pattern [Mudge 2020] to capture
the updates in a flexible and safe way. We also rely on a trusted deployer, which is an
off-chain service, to ensure safe evolutions of implementations and specifications.

In [Antonino et al. 2022]] we presented an initial version of the verification
framework where the specification is fixed for a given contract evolution history:
an initial deployment or subsequent upgrade is allowed only if the implementation
conforms to this specification. Our main current focus is to extend the framework
in [Antonino et al. 2022] to allow the interface specification to change, provided the
evolved version is a refinement of the previous one in the evolution history. In this
way, we capture both data refinement and interface extension. We present here a small
summary of this extension; the details will appear in [Antonino et al. 2023|]. We are also
investigating techniques to automatically verify contracts including loops, not addressed
in [Antonino et al. 2022, |Antonino et al. 2023]].

The key element of the framework is a Trusted Deployer which ensures that
upgrades entail only refined specifications and conforming implementations. It is
implemented as an off-chain service. An overview of the Trusted Deployer is depicted
in Figure The core component is a Verifier whose interface includes the functions

Trusted Deployer

get spec —
verify upgrade
upgrade _ | update contract S create Ethereum
contract) SEAEESE | contract Platform
verify . create
create | creation contract
contract

Figure 1. Trusted deployer architecture.

verify-creation and verify-upgrade. Another component is an Upgrader that includes the
functions create-contract and upgrade-contract. Overall, these functions guarantee safe
deployment and updates of smart contracts.

Upon receiving a request to create a new contract, via the function create-contract
with a specification S and an implementation C' as parameters, the Trusted Deployer
invokes the function verify-creation of the Verifier. This boolean function yields true if C'
conforms to S, and false otherwise. If conformance holds, then the Deployer requests to
the Upgrader that the contract be created in the Ethereum platform, and the pair (S, C) is
stored as a reference for subsequent upgrades.

Similarly, when requested to upgrade a contract via the function upgrade-contract,
both a specification .S and a contract C' are given as parameters. In this case, however,
extra information must be provided: a relation (specifically, an abstraction function,
say Af) and a function that we denote by (init). Since we allow the specification
of a contract to change (both its representation and interface), we need a relation to
establish the refinement of contracts with distinct data representations. Currently, this
is provided by the developer, but we are working on a strategy to automatically infer such
relations. The function init is a concretisation function, to transform abstract states
into concrete ones. The need for this function is also a consequence of the flexibility
of allowing specifications to change their data representation, but, particularly, due to
the fact that a smart contract has a persistent state in a blockchain. Therefore, when
a contract is upgraded by one with a different representation, we use this function to
generate a new concrete representation from the abstract one. As in the case of contract
creation, an upgrade requires that C' conforms to S, and that S refines the currently
deployed specification. Then the pair (S,C) becomes the current specification and
implementation, and C' is effectively deployed in the blockchain. Finally, the purpose
of the get-spec function is to check whether a contract instance has been deployed by the
Trusted Deployer and which specification it currently satisfies.

2.1. Specification refinement and implementation conformance

Formally, a specification can be characterised as follows.

Definition 1 A specification is a triple (D, I, A) such that the data representation D is a
finite sequence that defines the member variables of the specification, each of which with
its unique name n; and associated type t;. The interface I is a finite mapping from function
names to their signatures. A signature is a pair of sequences (ins, outs) with the input and
output parameters of the corresponding function. Each interface has a special function

named cons, which stands for the constructor. The annotation A = (inv, Pre, Post) is a
triple containing the contract invariant, preconditions, and postconditions.

The semantics of a specification is given by a labelled transition system (LTS)
where the states capture the values of the contract variables and the transitions are
labelled by function calls that must obey the classical semantics of the associated contract
annotations. The initial state ensures that only constructors can be called. Another
relevant aspect is that if a precondition is not met, a transition in the LTS can lead
to an arbitrary state, except for the initial state. The specification refinement relation
we define is based on conventional notions of program refinement [Morgan 1994] and
behavioural subtyping [Liskov and Wing 1994]: it allows for invariant and postcondition
strengthening whereas preconditions can be weakened. Our definition is intentionally
flexible concerning specification evolution. It allows for simple strengthening of
postconditions/invariant and weakening of preconditions, but it also enables more
complex evolutions such as data-representation changes and interface extensions.

Similarly, we formalise the notion of conformance of a smart contract with respect
to a specification. Informally, the contract must declare the same functions with matching
signatures, and the transition relation in the induced LTS of the implementation must
be a subset of that of the specification. The intuition is that the behaviours of the
implementation are restricted to those allowed by the specification.

We use solc-verify [Hajdu and Jovanovi¢ 2020] to check whether a solidity
contract obeys its design contract (including pre-, postconditions and invariants).
Additionally, we use solc-verify to mechanise the verification of specification refinement
and implementation conformance, by encoding the associated proof obligations as
annotated contracts in Solidity.

3. Case Studies

First we consider the simpler scenario of smart contract evolution that must obey a fixed
specification. We consider the ERC20, ERC3156, and ERC1155 Ethereum standards.
Our framework was able to identify errors in the following categories: Integer Overflow
and Underflow (IOU); Non Specification Conformance (NSC), when a function does not
meet a specific mandatory requirement defined in its ERC specification; Nonstandard
Token Interface (NTI), when the contract does not meet the syntactic restriction defined by
the standard; wrong operator (WOP), for instance, when the < operator would be expected
but < is used instead; and Verification Error (VRE), when the verification process cannot
be completed or the results were inconclusive. It also established conformance for some
of the samples analysed. Table[I}a shows the results we obtained for the ERC20 standard.
Similar flaws were identified for ERC1155 and ERC3156. Scenarios involving data
refinement and interface extension are addressed in Table [Ilb.

4. Conclusion

The main contribution of this work is an automated framework to ensure that smart
contracts are deployed and upgraded in a safe way, in the sense of conforming to
a reference specification. Considering a typical development history, the first step
the deployment of a reference specification and an implementation that is checked to
conform to the specification. Progressively, the specification can evolve, provided it is

Table 1. Framework results

a. Simple Evolutions (ERC20)

Repository | Commit | Time | Output Repository Commit | Time | Output
OxMonorepo | 548fda |2.85s| WOP Uniswap e382d7 |3.57s| 10U
DigixDao | 5aee64 |7.60s| NTI Uniswap 55ae25 [3.43s| WOP
DsToken | 08412f |4.14s| WOP SkinCoin 25db99 |0.99s| NTI
Klenergy | 60263d |1.70s| VRE SkinCoin 27c298 | 1.94s| NTI
b. Changes of Data Representation and Interface Extension (ERC20, ERC721)
Repository | Commit | Time | Output Repository Commit | Time | Output
DigixDao | 0a9709 | 6.07s| 10U Token ERC20 44c3al |5.33s| WOP
DigixDao | 0550e8 |7.10s| IOU || OpenZeppelin ERC721 | b7d60f |7.43s| IOU

a refinement of the previous one in the evolution chain, and the implementation can be
upgraded, provided it conforms to the associated specification. Furthermore, we address
the consistent migration of the persistent storage of smart contracts in a blockchain,
throughout the evolution history. We have also evaluated the proposed framework
considering real smart contracts available in several repositories. We have found bugs
in implementations of ERC20, ERC1155, ERC 3156 and ERC721.

Concerning related approaches, there is much discussion on the need for
systematic support for the safe evolution of smart contracts (see, for instance,
[Tolmach et al. 2021]) as well as the use of design patterns that partially address the
problem [Lu?2018]. However, there are only a couple of approaches close-related
to ours. Due to the lack of space, we consider two of these works. The work
in [Dickerson et al. 2018]] proposes an on-chain solution based on the use of special
contracts that carry a proof that they conform to their specifications. Unlike our approach,
this requires significant changes in the smart contract platforms themselves; also, being
on-chain makes the use of such verification methods more difficult since these methods
would slow down consensus. In [Rodler et al. 2021]], the authors propose a mechanism to
upgrade contracts in Ethereum that works at the EVM-bytecode level. Their framework
takes vulnerability reports issued by the community as an input and tries to patch affected
deployed contracts automatically using patch templates. While they simply test patches
that are reactively generated based on vulnerability reports, we require the user to provide
a specification (and possibly an abstraction function) of the expected behaviour of a
contract and carry out formal and automated reasoning. Furthermore, it is worth noting
that while we define the semantics in terms of LTSs and use the solc-verify as an
underlying tool for verification, alternative strategies and notations exist. For instance,
[Patrick et al. 2021]] discuss Propositional Dynamic Logic as a formal system designed
to reason about smart contracts. As far as we are aware, the systematic treatment of a
safe evolution of smart contracts in blockchains that we propose is neither supported by
Ethereum nor by any other deployment framework.

Despite the promising results, there are some opportunities for improvement.
Currently, we are restricted to partial correctness notions. In ongoing work, we are
considering termination so that we can fully reason with smart contracts containing loops.
The current implementation requires that the developer provides the abstraction function
when a specification is upgraded. We are looking at approaches, based on model learning,

to automatically infer such relations. We are also working on the automatic generation
of the pre-, postconditions, and invariants from the textual descriptions of the token
standards, using natural language processing techniques.

References

Antonino, P., Ferreira, J., Sampaio, A., and Roscoe, A. W. (2022). Specification is law:
Safe creation and upgrade of ethereum smart contracts. In Schlingloff, B. and Chai, M.,
editors, Software Engineering and Formal Methods - 20th International Conference,
SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings, volume 13550 of
Lecture Notes in Computer Science, pages 227-243. Springer.

Antonino, P., Ferreira, J., Sampaio, A., Roscoe, A. W., and Arruda, F. (2023). A
refinement-based approach to safe smart contract deployment and evolution. SoSyM—
International Journal on Software and Systems Modeling. Submitted.

Dickerson, T. D., Gazzillo, P., Herlihy, M., Saraph, V., and Koskinen, E. (2018). Proof-
carrying smart contracts. In Financial Cryptography Workshops.

Hajdu, A. and Jovanovié, D. (2020). solc-verify: A modular verifier for solidity smart
contracts. In VSTTE, pages 161-179. Springer.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811-1841.

Lu, A. (2018). Solidity DelegateProxy Contracts. https://medium.com/
gnosis—-pm/solidity—-delegateproxy—contracts—-e09957d0f201.

Meyer, B. (1992). Applying ’design by contract’. Computer, 25(10):40-51.

Morgan, C. (1994). Programming from Specifications (2nd Ed.). Prentice Hall
International (UK) Ltd., GBR.

Mudge, N. (2020). EIP-2535: Diamonds, Multi-Facet Proxy. |https://eips.
ethereum.org/EIPS/eip—-2535.

OpenZeppelin (2018). Proxy Patterns. https://blog.openzeppelin.com/
proxy-patterns accessed on 30 May 2023.

Patrick, A., Coelho, I. M., and Lopes, B. (2021). Automatic program verification in
dynamic logic with applications to smart contracts. In Anais do 11 Workshop Brasileiro
de Logica, pages 1-8. SBC.

Rodler, M., Li, W., Karame, G. O., and Davi, L. (2021). Evmpatch: Timely and automated
patching of ethereum smart contracts. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1289-1306. USENIX Association.

Siegel, D. (2016). Understanding the dao attack. https://www.coindesk.com/
understanding-dao—hack-journalists accessed on 22 July 2021.

Tolmach, P, Li, Y., Lin, S.-W.,, Liu, Y., and Li, Z. (2021). A survey of smart contract
formal specification and verification. ACM Computing Surveys (CSUR), 54(7).

Vollmer, J. (2016). The biggest hacker whodunnit of the
summer. https://www.vice.com/en/article/pgkzgm/

the-biggest-hacker-whodunnit-of-the—-summer| accessed on 22
July 2021.

https://medium.com/gnosis-pm/solidity-delegateproxy-contracts-e09957d0f201
https://medium.com/gnosis-pm/solidity-delegateproxy-contracts-e09957d0f201
https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://blog.openzeppelin.com/proxy-patterns
https://blog.openzeppelin.com/proxy-patterns
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.vice.com/en/article/pgkzqm/the-biggest-hacker-whodunnit-of-the-summer
https://www.vice.com/en/article/pgkzqm/the-biggest-hacker-whodunnit-of-the-summer

	Introduction
	The proposed framework
	Specification refinement and implementation conformance

	Case Studies
	Conclusion

