Saving gas with a packaging framework
for Ethereum transactions

Bruno Medeiros de Oliveira', Pedro Antonino?, Augusto Sampaio!

!Centro de Informética — Universidade Federal de Pernambuco (UFPE) — Recife — Brazil
2The Blockhouse Technology Limited — Oxford, UK

bmo@cin.ufpe.br, pedro@tbtl.com, acas@cin.ufpe.br

Abstract. Transaction costs are a barrier to the wide adoption of decentralized
applications. To address this issue, this paper proposes a framework to opti-
mize transaction fees by carrying out a conflict-avoiding packaging of multiple
smart-contract calls into a single transaction. It relies on two main concepts: a
way to optimize the bundling of transactions with a conflict-avoiding packaging
strategy and a way to execute such bundles with a package-processing method-
ology. We illustrate our framework and the gas economy it can bring with a
case study where we analyze a popular Ethereum smart contract.

1. Introduction

Decentralized applications (DApps) are fast-growing domains that have the potential to
disrupt conventional businesses. They aim to tackle the mistrust crisis in many security-
oriented businesses. However, the intensive use of blockchains and their associated high
costs hinder DApps’ broader adoption. To address this issue, existing research mainly
focuses on designing new protocols at the blockchain level. These protocols are designed
without the legacy platform of an operational blockchain and deployed DApps in mind. In
this context, this work proposes a framework to optimize transaction fees by implement-
ing a conflict-avoiding packaging of multiple smart-contract calls into a single transac-
tion. It relies on two main concepts: a way to optimize the bundling of transactions with
a conflict-avoiding packaging strategy and a way to execute such bundles with a package-
processing methodology. To motivate the approach, this work considers a typical DApp
architecture, where a DApp client holding an Ethereum account sends a transaction on the
Ethereum blockchain to invoke a smart-contract function there. Despite having the poten-
tial to improve the efficiency and scalability of the Ethereum network, such methods have
not been widely adopted or implemented in the real-world Ethereum ecosystem. This lack
of adoption is attributed to several design challenges that arise from the tradeoff among
packaging’s security, cost-effectiveness, and timelines; a time window needs to be used to
wait for the transactions to be packaged. We illustrate the workings of our framework and
the gas economy it can bring with a case study where we analyze the TetherToken smart
contract: a popular Ethereum contract.

2. Background

Ethereum is a public blockchain-based distributed computing platform. Simply put, it can
be considered a large computer composed of small computers spread all over the world
[Buterin 2016]. It is possible to write applications, called smart contracts, that run on this

global platform that ensures availability, and resistance to censorship, fraud, or third-party
interference. It also allows transfers of its native cryptocurrency, called Ether, between
parties without the need for a central authority. Ethereum smart contracts are identi-
fied by an address. They have a balance of Ether they own which is managed by their
code. Furthermore, developers can create decentralized applications that typically rely on
a combination of a smart contract and an off-chain service that interacts with this contract.
Dapps have been used to implement decentralized versions of traditional services such as
loans, security registries, voting systems, regulatory compliance and more.

These advantages come at a cost. Gas in Ethereum is a unit that measures the
amount of computational effort that is required to perform certain operations. To have a
transaction executed, a user is required to pay a fee proportional to the amount of gas it
requires. This amount-of-Ether-per-gas-unit rate is the gas price and it is set by the user
creating the transaction. The block producers (i.e. miners) of this platform collect these
transaction fees as a reward for producing blocks.

It is possible to highlight two main reasons for the existence of gas in Ethereum.
Firstly, it is a financial incentive for the block producers of the network: the greater the
number of miners, the more secure the blockchain. The other reason is to ensure the
termination of smart contract executions. There is a limit on the amount of gas that a
transaction is allowed to consume.

3. Related work

Reducing the transaction cost for blockchain applications is essential for their real-world
adoption and several approaches have been proposed for that.

Layer-one protocols or base layers of a blockchain system, which define the
fundamental rules and functionalities of the blockchain, such as sharding and other
designs, have been proposed to reduce the cost of blockchain applications. They re-
quire launching a new blockchain network from scratch, or a hard-fork. However, it is
known to be difficult to bootstrap or implement hard-forks in a large-scale blockchain
[Kokoris-Kogias et al. 2018] [Luu et al. 2016].

Layer-two protocols are another approach that focuses on designing add-ons to a
deployed blockchain system by designing extensions, including smart-contracts on-chain
and services off-chain. Payment networks are a notable example of layer-two designs that
place most of the application logic of making a series of micropayments off the blockchain
while resorting to the blockchain for control operations (e.g., opening and closing a chan-
nel) and error handling. In this approach, a payment channel “batches” multiple re-
peated micro-payments into minimally two transactions. State channels generalize the
idea to support the game-based execution of smart contracts [Antonopoulos et al. 2021]
[Cheng and Zhang 2019] [Dziembowski et al. 2018][Miller et al. 2017].

Contract optimization approaches try to identify and resolve the problems with
patterns, syntax, or semantics that cause smart contracts to consume an excessive amount
of gas [Chen et al. 2017, Marchesi et al. 2020, Albert et al. 2020, Li 2021]. This line of
work is orthogonal to the Layer-one and Layer-two Protocols.

Batching transactions is a method of combining multiple transactions into one.
Our approach is orthogonal to the above protocols. For instance, Layer-2 protocols pro-

Contract Acquisition of Packaging strategy Anew network foreach Original Behavior R)
selection history and Conflict -) study m Replication m) Execution Metrics and

- Analysis Comparison
E - agp =
v —_— A new network for each Original Behavior
— O .
e QY O ‘ - study m EReplicaton mp Execution ™ m
v O O A new network for each Original Behavior . ‘ 0
@ - - study M) Replication m) Execution
L}

Figure 1. The seven phases of the framework proposed

vide a mechanism to execute batches of transactions but they are not concerned with
methodologies on how to create these batches in an optimal way, i.e., by analysing con-
flicts between transactions. Users can submit multiple transactions at once by either using
a smart contract that executes them together [Multisend 2023] or a tool/service that broad-
casts them as a single transaction [Wang et al. 2021] [Hughes et al. 2021].

4. Proposed framework and case study

Packaging transactions on the Ethereum network is a technique used to save on gas costs
by combining the execution of multiple transactions and batching them. We present a
systematic framework to analyze the impact of such packaging on existing Ethereum
smart contracts. Our approach analyses contracts by executing the contract in a testing
environment, and then comparing the execution results to the historic execution results
of the contract on the blockchain. Moreover, we present a case study where we use our
framework to analyze the smart contract TetherToken which provides tangible evidence
that a methodology to package transactions can reduce gas consumption.

Our framework requires an input contract instance identified by its address
in Ethereum. The phases of our framework are depicted in Figure 1. The first
three phases are performed only once for the input contract and the subsequent four
stages are customized for each type of batch-execution approach. For our case
study, we analyze the TetherToken smart contract [TetherToken website | at address
Oxdacl7£958d2ee523a2206206994597¢c13d831ec7. Broadly speaking, it is
an ERC20 contract instance implementing a stable cryptocurrency pegged to the US dol-
lar. We chose this contract as it was the contract that spent the most gas in the period
between May 2021 and October 2021. Their gas consumption (188243044506075 units)
is associated, of course, to a large number of calls (26010105) that also provides evidence
of its popularity.

The history acquisition step focuses on obtaining the transactions carried out by
the contract on the Ethereum blockchain. Despite all the information being public avail-
able on the Ethereum blockchain, retrieving the history requires a costly transaction-by-
transaction redemption interaction. In order to speed up the survey of a contract’s history,
Google’s BigTable [Google Bigtable 2022] was used, which provides public tabular data
on Ethereum transactions.

The packaging strategy with conflict analysis step attempts to create bundles of
Ethereum transactions without introducing transaction conflicts. Conflicts arise when two
transactions cannot both be executed in a given order. For instance, let A be an address
with zero balance. A transaction t; that transfers some sum Y out of A cannot happen be-

fore a transaction ¢, that transfers X into A; these transactions would represent a conflict
in this order. However, for X > Y, t5 can happen before ¢;; no conflict. Aside from con-
flicts, another piece of information that needs to be taken into account is the time frame
used to package transactions. Users of such a system have to be aware of how long their
transaction might be held up for the sake of saving gas via packaging. Our goal is to offer
a complete solution for avoiding conflicts while packaging Ethereum transactions. Cur-
rently, we have analyzed conflicts for our case study manually by examining the Solidity
code and deducing potential conflicts between different contract calls. In future work, our
objective is to streamline and automate the process; this will involve data and control flow
analysis and, possibly, will allow only partial automation.

The network creation step attempts to achieve a significant level of similarity in
reproducing the behavior of a smart contract. To this end, we create a local Ethereum net-
work mapping the original addresses to the new network addresses adapting the original
calls to these new addresses.

The behaviour recreation step relies on a package processing methodology to ex-
ecute batched transactions. This methodology consists of (i) a strategy to represent —
with a way to encode and decode — a package of transaction and (ii) a strategy to ex-
ecute each of these packaged transactions. Note that while the packaging strategy is in
charge of deciding which transactions are to be (logically) bundled together, the pack-
age processing methodology defines the format of these packages and how they are ex-
ecuted. In our case study, two distinct package-processing methodologies were imple-
mented. The first was the addition of a new function to the smart contract being analyzed
that processes a sequence of function calls in the form of a Solidity array; we call this
approach commandArray. The second approach consists of encoding calls using the
multisend (library) methodology [Multisend 2023].

In the execution step, for a given recreated history of the contract according to
a packaging strategy and processing methodology, our framework executes each of the
created packages in the appropriate ordering. As a baseline for our analysis, we also
replay the original contract with its unaltered history. The execution of these packages
is implemented by test cases in the Truffle framework [Truffle] with the support of the
Ganache framework[Ganache 2022]. During the execution, a total gas expense report is
extracted, which is essential to the last step of the framework.

In the metrics and comparison step, the gas expense reports generated by the
executions are compared.

4.1. Results

In our packaging strategy, we decided to limit the time frame for batching transactions
to a five-minute window. We considered that this time trade-off would be reasonable for
customers who are willing to wait a little longer to complete their transactions on the
blockchain. All history of the contract resulted in 50793 batches of transactions from ad-
dress 0x2faf487a4414fe77e2327f0bfdae2a264a776ad2 to the TetherToken
contract.

Table 1 presents some of the results we obtained with our case study. The table on
the left-hand side shows examples of packages extracted from our case study execution.
It illustrates the sort of gains that are expected from different package sizes (in number

Samples of batches extracted from execution Global analysis with 10050 batches
Amount ' ‘ Total Tota} Totgl
of % Gain %Gain Amount %Gain % Gain
. multisend | commandArray of using using
transactions . .
transactions | multisend | commandArray
1 -4.69% 51.56% 21352 50.47% 70.55%
2 46.09% 74.22%
4 68.02% 83.78%
6 80.14% 86.52%
8 80.66% 89.31%
10 87.02% 90.85%

Table 1. TetherToken case study results.

of transactions). We can see significant gains in gas savings, and the expected trend is
that gains increase with the increase in the number of transactions in a package. It is
possible to see that the approach using the multisend has a greater gain in relation
to the commandArray. We assume that this advantage is due to the encoding of the
arguments made off-chain, sending the data to the smart contract already in binary there is
an economy. However, it also decreases as the number of bundled transactions increases.
The table on the right shows the global analysis related to the 100050 first batches. The
material with all analysis data can be accessed in the paper [Paper repository 2023].

4.2. Threats to the validity

We can point out two main threats to the validity of our case study. The first is the limited
sample size. Since the study considered only one smart contract and one caller in this
case study, it may not be representative of the broader Ethereum network. A small sample
size can make it difficult to generalize the findings to other contexts. The second is the
maturity of the tools used to recreate the blockchain and the different histories we are
interested in.

5. Conclusion

This paper presents a systematic framework for analyzing the impact of packaging trans-
actions on existing Ethereum smart contracts. We used the TetherToken smart contract as
a case study to demonstrate the effectiveness of our approach. The framework involves
recreating and analyzing a “packaged history” of the blockchain according to a packag-
ing strategy and different package-processing methodologies. The results show significant
gains in gas savings demonstrated by two different approaches.

References

Albert, E., Correas, J., Gordillo, P., Roman-Diez, G., and Rubio, A. (2020). Gasol: Gas
analysis and optimization for ethereum smart contracts. In Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference, TACAS 2020,
pages 118—125. Springer.

Antonopoulos, A. M., Osuntokun, O., and Pickhardt, R. (2021). Mastering the Lightning
Network. ” O’Reilly Media, Inc.”.

Buterin, V. (2016). What is ethereum? Ethereum Official webpage. Available: http://www.
ethdocs. org/en/latest/introduction/what-is-ethereum. html.

Chen, T., Li, X., Luo, X., and Zhang, X. (2017). Under-optimized smart contracts de-
vour your money. In 2017 IEEE 24th international conference on software analysis,
evolution and reengineering (SANER), pages 442-446. IEEE.

Cheng, R. and Zhang, F. (2019). Ekiden: A platform for confidentiality-preserving, trust-
worthy, and performant smart contracts. In 2019 IEEE European Symposium on Secu-
rity and Privacy (EuroS&P), pages 185-200. IEEE.

Dziembowski, S., Faust, S., and Hostakova, K. (2018). General state channel networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 949-966.

Ganache (2022). https://trufflesuite.com/docs/ganache/. Accessed:
2022-05-22.

Google Bigtable (2022). https://cloud.google.com/bigtable/docs/
overview. Accessed: 2022-05-22.

Hughes, W., Russo, A., and Schneider, G. (2021). Multicall: A transaction-batching
interpreter for ethereum. In Proceedings of the 3rd ACM International Symposium on
Blockchain and Secure Critical Infrastructure, pages 25-35.

Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and Ford, B. (2018).
Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 583-598. IEEE.

Li, C. (2021). Gas estimation and optimization for smart contracts on ethereum. In 2027
36th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 1082-1086. IEEE.

Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and Saxena, P. (2016). A se-
cure sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS *16, page 17-30.

Marchesi, L., Marchesi, M., Destefanis, G., Barabino, G., and Tigano, D. (2020). Design
patterns for gas optimization in ethereum. pages 9—15. IEEE.

Miller, A., Bentov, 1., Kumaresan, R., and McCorry, P. (2017). Sprites: Payment channels
that go faster than lightning. CoRR, abs/1702.05812.

Multisend (2023). https://github.com/gnosis/ethers-multisend. Ac-
cessed: 2023-05-30.

Paper repository (2023). https://github.com/medeirosbm/
cologquio-sbs-2023. 2023.

TetherToken website. https://tether.to/. Accessed: 2022-05-22.

Truffle. https://trufflesuite.com/docs/truffle/. Accessed: 2022-05-
22.

Wang, Y., Zhang, Q., Li, K., Tang, Y., Chen, J., Luo, X., and Chen, T. (2021). ibatch: sav-
ing ethereum fees via secure and cost-effective batching of smart-contract invocations.
pages 566-577.

