
Obtaining a Set of Recommendations for Evolving Executable
Languages towards Systems-of-Systems Architecture Design∗

Bruno G. A. Lebtag (Student)1, Valdemar V. Graciano Neto (Supervisor)1

1 GoIn-Sight: Goiás Information Systems and Software engineering Research Team
Mestrado Acadêmico em Ciência da Computação

Programa de Pós-Graduação em Ciência da Computação
Instituto de Informática – Universidade Federal de Goiás (UFG)

Caixa Postal 131 – CEP 74001-970 – Goiânia – GO – Brazil
Admission: 03/2019 – Qualification: 06/2020 – Expected period of defense: 02/2021

{brunogabriel@inf.ufg.br, valdemarneto@ufg.br}

Abstract. Systems of Systems (SoS) are complex systems composed of manage-
rially and operationally independent constituent systems (CS). Smart cities are
examples of SoS. However, these types of systems impose challenges to tradi-
tional software architecture such as highly evolutionary architecture due to the
evolution of individual CS and emergent behaviors that results from the inter-
operability of CS. Executable Models (ExM) are a class of models that can be
executed and that can assist on architectural design of SoS. By using them, ar-
chitects can predict the SoS structure and behavior by visualizing and simu-
lating the SoS still at design-time. On the other hand, as any other emergent
technologies, it suffers with absent scientific evidences of its benefits, mainly in
industrial context. The main contribution of this master thesis project intends
to be the presentation of evidences about the use of ExM to solve problems in
the SoS software architecture design. For achieving such purpose, this project is
structured in well-defined steps: (i) a systematic mapping study, (ii) elaboration
of a conceptual map derived from the mapping study, (iii) a survey to obtain
perceptions from software engineering professionals on the use of ExM in the
context of engineering simple systems and (iv) a new survey expanding the pre-
vious study and to obtain perceptions from software engineering professionals
on the use of ExM in the context of architectural design of SoS. Preliminary
results reveal that ExM have been reported in diverse SoS domains, offering a
dynamic and interactive view to the SoS. We also found that software engineer-
ing professionals see ExM as suitable solution for dealing with complex and
critical systems as SoS.

Keywords: Systems-of-Systems, Executable Models, Software Architecture.

Related events: SBCARS, SBES

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
- Brasil (CAPES) - Finance Code 001.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

15



1. Introduction

Systems-of-Systems (SoS1) are a type of complex systems [Northrop et al. 2006,
Maier 1999] that represent a new challenge to system architecture (SA) [Jamshidi 2008].
SoS are composed of managerial and operational sub-systems known as constituent sys-
tems. Smart cities are an instance of SoS [Manoj Kumar et al. 2018]. In a smart city,
its architecture is constantly changing and evolving. Its citizens are frequently arriv-
ing and leaving the city while bringing together their appliances capable of commu-
nicating via the internet (so called smart gadgets) which are capable of contributing
and affect the smart city architectural configuration. Executable technologies, such as
models@runtime [Gu et al. 2018], executable UML [Ciccozzi et al. 2018] and simula-
tion [Gray and Rumpe 2016] which are known as Executable models (ExM) allow soft-
ware architects to design and evaluate the architecture and the emerging behaviors of their
constituent systems [Levis and Wagenhals 2000].

ExM allow the architect to (i) visualize systems structure and behavior still at
design-time, (ii) predict and evaluate the consequences of architectural changes (iii)
model and observe the interactions of constituent systems and (iii) propagate such changes
in the source model to preserve the documentation updated. However, ExM can still be
considered an emergent technology [Wang and Dagli 2011] since it has not even been
fully explored beyond academic context [Ciccozzi et al. 2018].

The main goal of this study is to contribute to the research area of using ExM
for architectural design of SoS. Our specific goals are: (i) providing a mapping of the
state of art and to produce a conceptual map of the main concepts involved in the area,
(ii) evaluating existing ExM notations (using survey and experiment) about their usability
and suitability to support SoS architectural design from a technical and professional per-
spective, and (iii) compiling the results in a list with benefits and opportunities perceived
by professionals to foster ExM evolution to cope with SoS demands. Preliminary results
reveal that (i) architectural evaluation and synthesis (via simulation) is very important for
SoS architectural design, (ii) software engineering professionals consider ExM suitable
for complex and critical applications while simultaneously serving as a communication
document.

This paper is organized as follows: Section 2 presents the paper background; Sec-
tion 3 describes the scientific methodology and evaluation plan; Section 4 presents the
preliminary results and achievements; Section 5 brings the expected contributions; finally,
Section 6 concludes the paper with the related works.

2. Background

SoS is an emergent research area. As any other research area, it also suffers from di-
vergent definitions and perspectives. One of the most used definitions was proposed by
[Maier 1999]. He defines SoS in terms of five main characteristics: (i) Operational In-
dependence (OI) of CS, i.e., each individual CS is independent and able to operate when
disassembled from the SoS, preserving its autonmy; (ii) Managerial Independence (MI)
of constituents, since CS present a degree of self-governance and are managed and owned

1Herein, SoS acronym will be interchangeably used to express both singular and plural forms: System-
of-Systems and Systems-of-Systems.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

16



by different organizations and entities; (iii) Distribution (D), which indicates that CS usu-
ally operate distributed and through interoperability links; (iv) Evolutionary Develop-
ment (ED), as the entire SoS evolves as a results of individual CS and interoperability
links evolution; and lastly (v) Emergent Behavior (EB), which is the global behaviors
achieved through CS interoperability. As a result of OI, the SoS architecture is dynamic
or evolutionary [Oquendo 2016], i.e., constituents addition, replacement, removal or the
entire SoS dissolution and rearrangement constantly leads the SoS to novel architectural
arrangements known as coalitions [Manzano et al. 2020].

These five characteristics represent challenges to traditional architecture practices
[Jamshidi 2008]. Distribution forces architects to pay special attention to interoperability
quality attribute. ED also poses as complicating factors for the architecture, once tradi-
tional architectures are not so dynamic and current notations are not prepared to capture
such dynamism, which pressures architects to search for new alternatives, such as ExM
and Adaptive Systems [Jamshidi 2008, Gu et al. 2018]. EB is another problem that archi-
tects must face. They can represent new opportunities to be explored as well as threats
to the security and stability of the whole system. Because SoS are usually explored in
critical domains such as military domain [Jamshidi 2008], researchers are constantly in-
vestigating new ways to deal with them and looking for alternatives to manage unknown
and uncertain conditions. Thus, architectural evaluation plays a major role in SoS devel-
opment.

Architectures should then be evaluated. When dealing with SoS, which usually
has critical nature, the architecture importance becomes evident as errors could bring
serious consequences. Therefore, it is fundamental to spend time and efforts to develop
the architecture and to evaluate it. However, traditional approaches struggles to deal with
complexity imposed by CS independence, ED and EB. On one hand, visual models such
as UML diagrams currently face a decline in its adoption by the industry. Nevertheless,
they would still struggle to represent a complex and diverse system, composed of many
constituents. SoS pushes graphic notation to its limit of usefulness to represent so many
information as it becomes hard to maintain various models for each constituent system
and to obtain some information which is scattered across different models. On the other
hand, mathematical/formal models require professionals to have mathematical and formal
background, an ability that can be difficult to find. Another problem shared by both
approaches is maintainability. Visual and mathematical models requires to be constantly
updated as the SoS evolves. In this sense, ExM can represent an advantage to traditional
approaches.

ExM are models that can be executed [Dahmann et al. 2017]. Thus, they can
be used directly as CS or as prototypes [Dahmann et al. 2017]. Models@Runtime
[Gu et al. 2018], Executable UML [Ciccozzi et al. 2018] and Simulation Models are ex-
amples of ExM. They offer the same benefits of Visual models as they are usually accom-
panied by a visual representation but with the extra benefit of being executable. Architect
can use them to simulate the final SoS and the interactions among components which
allow them to predict and explore structure and behaviors still at design-time, thus they
can use ExM to predict EB in the SoS [Jamshidi 2008, Dahmann et al. 2017]. The ED is
also simplified as architects can directly modify the models and changes are automatically
propagated to the underlying documentation. Those benefits are essential to SoS archi-

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

17



tecture evaluation as they can help to cope with ED and EB problems. However, ExM
is also an emergent technology [Wang and Dagli 2011]. There are many opportunities
yet to be explored and improved. Industry software engineering professionals can greatly
contribute to improvements based on their daily experience with software development.
This study aims to reduce this gap and to further consolidate the ExM research area. The
next section details the methodology elaborated to achieve the study goals.

3. Scientific Methodology and Evaluation Plan
The initial hypotheses motivating this study were ”Current ExM notations are not
adequate to represent SoS architecture from an industry practitioners point of view”
and ”Some ExM notations are more suitable to evaluate some SoS characteristics”.
To evaluate both hypotheses, we followed the scientific methodology presented by
[Neto et al. 2010] and presented below.

Ad-hoc Literature Review: We initially conducted an ad-hoc literature review in
order to obtain the main concepts involved in the area of ExM, SoS and SA. we identified:
(i) the main authors of each area; (ii) important concepts and definitions; and (iii) related
work.

Systematic Mapping Study (SMS): From the previous step, we identified ab-
sence of a SMS in the use of ExM for SoS architectural evaluation. A SMS serves as an
overview map of current researches in area. Therefore, we performed a systematic map-
ping study on six different search bases to investigate how researchers are exploring ExM
for SoS architectural design. From the initial results, we concluded that the use of ExM
for SoS context is a gap to be further explored, particularly in the industrial context and
notations suitability for evaluating SoS characteristics.

Survey with software engineering professionals: We investigated the percep-
tions and opinions of software engineering professionals after experiencing two small
problems modeled using ExM. In this study, we exposed participants to two demonstra-
tive simple systems in order to obtained from this experience suggestions of improve-
ments for ExM. The intention is to obtain those perceptions and after progress to a more
elaborated scenario, as SoS.

Conceptual Map: Another result we obtained from the SMS was the the lack
of consensus on definitions in ExM community. As this is an important aspect for any
research area, we also decided to contribute to this problem. Therefore, we developed a
conceptual map with the main concepts in order to increase the standardization of ExM
terminologies while also presenting a discussion about the conflicting definitions.

Survey with software engineering professionals in the architectural design of
SoS: Lastly, we intend to expand the previous study to evaluate the ability of software
engineering professionals to evaluate the SoS architectural design. In the previous study,
we exposed participants to simple systems in order to identify problems and opinions in
this level, now we further expand the study by exposing participants to evaluate different
SoS architecture while collecting their perceptions and opinions.

4. Preliminary Results and Achievements
This master research project is currently half the way to reach its conclusion. The
qualification exam was performed and the student was approved on June 4th, 2020.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

18



Now, we present the preliminary results and current status of the each individual study
developed in this master research project:

SMS: This study was conducted from August, 2019 through March 2020. We
retrieved 196 studies and included 35 studies. Some preliminary results were the impor-
tance of architectural evaluation via simulation using mainly discrete event formalism
(Colored Petri nets — CPN and Discrete Event System Specification — DEVS) and
Agent-based formalism (ExtendSim formalism).
Survey with software engineering professionals: This study was conducted from,
September 2019 through June 2020. We collected 58 answers from software engineering
professionals around the world. Some preliminary results were the importance of
improving visual notation and the necessity of specialized training for engineering
professionals to use ExM.
Conceptual Map: During the SMS conduction, we collected important concepts and
definitions used along the studies and we also observed conflicting definitions. Based on
this results, we elaborated a conceptual map condensing those findings and presented a
discussion about the conflicting definitions (e.g. ExM definition itself).

We will initiate the development of the protocol of last survey and the confection
of its SoS architecture models and questionnaire during August and beginning of Septem-
ber, 2020. After the confection process, we will perform a pilot survey to calibrate the
questionnaire and to identify any problems. Lastly, we will initiate the survey invitation
by the end of September. The results will be analysed and submitted to a journal yet to be
chosen. The thesis development will initiate by the end of year and the expected period
of defense will be the first semester of 2021.

5. Expected Contributions
We expect to contribute to the research area with results from:

• A SMS, which provides the current state of art in researches of ExM in the context
of SoS architecture design;
• A survey with software engineering professionals in the context of engineering

simple systems. We present a list of advantages, disadvantages and opportunities
of improvements;
• The elaboration of a conceptual map that lists the main concepts and definitions

needed by the research area;
• A new survey expanding the previous study but in the context of architectural de-

sign of SoS. We also present a list of advantages, disadvantages and opportunities
of improvements;

The contribution is readily a theoretical one to underpin novel advancements on
ExM languages for SoS in the future.

6. Related Work
[Hojaji et al. 2019] presents a systematic mapping study regarding model execution trace.
Model execution trace as defined in the study is a mechanism to capture enough relevant
information related to the ExM during its execution for later analysis. The study also
presents some definitions for executable modeling language and ExM. The first notable

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

19



difference from our study is scope. While [Hojaji et al. 2019] aims to characterize the use
of model tracing for executable models, we are aiming for characterize the use of ExM for
SoS architectural evaluation. The resulting contributions are different because the areas
of interest are also different (model tracing and SoS architectural evaluation). The scope
of the study is also different. While our study aims to explore ExM in the scope of SoS
architecture, [Hojaji et al. 2019] has no specific scope. It is also important to notice that
this study is recent and thus it is sign of the relevance of ExM.

In [Guessi et al. 2015], the authors presented a systematic literature review that
investigates the notations being used to describe SoS. Although some presented notations
can be executed such as UML, the study does not focus exclusively in executable notations
as we do. On the other hand, In [Guessi et al. 2015], the authors compared some notations
against a known framework for ADL. For our project, we selected a different approach
for evaluating a single notation using a survey with software engineering professionals to
obtain evidences on desirable features for executable ADL for SoS.

[Hlupic 2002] investigate the use of simulation through a survey with academic
and industrial users. The study aims to identify the most used type of simulation software,
common application areas among other goals. The survey aimed to identify software
engineering professionals perspective through the use of toy examples followed by some
questions related to the presented models. We want to collect their opinion regarding their
use and any opportunity of improvement they may envision.

7. Final Remarks

This paper presented preliminary results of an ongoing master’s research project. We
found that research about the use of ExM for SoS architecture offers little scientific evi-
dences of their benefits and there is a scarcity of studies exploring it in a industrial con-
text. This master research project aims to contribute to the SoS and ExM research areas
by providing a (i) SMS on ExM for SoS architecture design (ii) conceptual map with the
main concepts of ExM, (iii) survey and controlled experiment with software engineering
professionals to evaluate the suitability of current notations.

References

Ciccozzi, F., Malavolta, I., and Selic, B. (2018). Execution of UML models: a systematic
review of research and practice. Software Systems Modeling, pages 1–48.

Dahmann, J., Markina-Khusid, A., Doren, A., Wheeler, T., Cotter, M., and Kelley, M.
(2017). SysML executable systems of system architecture definition: A working ex-
ample. pages 1–6.

Gray, J. and Rumpe, B. (2016). Models in simulation. Software & Systems Modeling,
15(3):605–607.

Gu, T., Lu, M., and Li, L. (2018). Runtime models for analysing and evaluating quality
attributes of self-adaptive software: A survey. In 2018 12th International Conference
on Reliability, Maintainability, and Safety (ICRMS), pages 52–61.

Guessi, M., Cavalcante, E., and Oliveira, L. B. R. (2015). Characterizing architecture
description languages for software-intensive systems-of-systems. In 2015 IEEE/ACM

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

20



3rd International Workshop on Software Engineering for Systems-of-Systems, pages
12–18.

Guessi, M., Neto, V. V. G., Bianchi, T., Felizardo, K. R., Oquendo, F., and Nakagawa,
E. Y. (2015). A systematic literature review on the description of software architec-
tures for systems of systems. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, SAC ’15, page 1433–1440, New York, NY, USA. Association for
Computing Machinery.

Hlupic, V. (2002). Simulation software: An operational research society survey of aca-
demic and industrial users. pages 1676–1683.

Hojaji, F., Mayerhofer, T., Zamani, B., Hamou-Lhadj, A., and Bousse, E. (2019). Model
execution tracing: a systematic mapping study. Software and Systems Modeling,
18(6):3461–3485.

Jamshidi, M. (2008). System of Systems Engineering: Innovations for the 21st Century.

Levis, A. H. and Wagenhals, L. W. (2000). C4isr architectures: I. developing a process
for c4isr architecture design. Systems Engineering, 3(4):225–247.

Maier, M. W. (1999). Architecting principles for systems-of-systems. Systems Engineer-
ing, 1(4):267 – 284.

Manoj Kumar, N., Goel, S., and Mallick, P. K. (2018). Smart cities in india: Features,
policies, current status, and challenges. pages 1–4.

Manzano, W., Graciano Neto, V. V., and Nakagawa, E. Y. (2020). Dynamic-SoS: An Ap-
proach for the Simulation of Systems-of-Systems Dynamic Architectures. The Com-
puter Journal, 63(5):709–731.

Neto, A., Spı́nola, R., and Travassos, G. (2010). Developing software technologies
through experimentation: Experiences from the battlefield. pages 107–120.

Northrop, L., Feiler, P., Gabriel, R., Goodenough, J., Linger, R., Longstaff, T., Kazman,
R., Klein, M., Schmidt, D., Sullivan, K., and Wallnau, K. (2006). Ultra-Large-Scale
Systems - The Software Challenge of the Future.

Oquendo, F. (2016). Formally describing the software architecture of systems-of-systems
with sosadl. In 2016 11th System of Systems Engineering Conference (SoSE), pages
1–6.

Wang, R. and Dagli, C. (2011). Executable system architecting using systems modeling
language in conjunction with colored petri nets in a model-driven systems development
process. Systems Engineering, 14(4):383–409.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

21


