
Using predictive models to evaluate the quality of a test suite
at class and method level.

Keslley Silva (Student)1, Érika Cota (Advisor)1

1Master’s in Computer Science
Postgraduate Program in Computing (PPGC) – Federal University of Rio Grande

do Sul (UFRGS) – Porto Alegre – RS – Brazil
Entry Year: 03/2019 – Qualification: 11/2019 – Expected conclusion: 02/2021

{keslley.silva, erika.cota}@inf.ufrgs.br

Abstract. Testing is an indispensable part of the software development process
and is a continuous process during the development life cycle. In this context,
examining the behavior of software systems to reveal potential problems is a
crucial task. To this end, the test suites usually are utilized to examine the
software quality. However, test suite quality control is hard for the tester,
especially in an evolving system. Such control is needed to assure and improve
the test suite’s quality and the application as a consequence. Currently, test
coverage criteria are used as a mechanism to assist the tester in analyzing the
test suite (e.g., find the weaknesses, and add a new test case or test inputs).
However, more strong coverage criteria (potentially showing less glaring
weaknesses) are challenging to assess. In this work, we propose a different
approach to support the developer in evaluating the test suite quality based on
more powerful test coverage criteria. We will follow the Knowledge Discovery
in Database process using machine learning algorithms to estimate the prime
path coverage at the method and class level. For this purpose, we will create
two large datasets consisting of source code metrics and test case metrics from
12 open-source Java projects, and these datasets will be used in the training
process to build the predictive models. Using the built models, we expected to
predict the prime path coverage at the method and class level with a reliable
prediction performance.

Keywords: Software testing, Coverage prediction, Code coverage criteria.

CBSoft Events: SBES and SBCARS.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

84



1. Problem Characterization
Software is developed and maintained to be used in a wide diversity of circumstances
and different configurations. Consequently, the software’s size and complexity increased,
and software development became more valuable in providing useful solutions. In this
context, software testing activities play an indispensable role in identifying problems and
ensuring the software’s quality and acceptability [Jorgensen 2013]. However, the tester
needs to know the test suites’ power, since a strong-power suite can detect more bugs than
a weak-power one [Zhang et al. 2019]. In the literature, test coverage criteria became
widely adopted as a representative of this power.

A test coverage criterion is a rule or group of rules that describes the test
requirements (TR); each requirement is a specific software element that a test case must
satisfy or cover [Ammann and Offutt 2016]. The widely used criteria are node and edge
coverage, which are graph-based, and many current testing tools measure it. These two
criteria generate the minimum TR for a test suite. In contrast, other criteria can explore
more sophisticated uses of the software under test (SUT), e.g., criteria that cover paths.

Test coverage criteria can help the team improve the test suite’s power through
rules for when to stop testing and support to find weaknesses and redundancies. However,
there are difficulties related to the estimation of more powerful criteria because current
tools do not support them. This automation has been restricted to node and edge
coverage. Besides, the manual execution of this process is typically unworkable. To
give an example, to measure the graph-based coverage of a test suite, one needs to
get the graph that describes the SUT, later derive the test requirements for a specific
criterion, and then trace the execution paths on this graph given by each test case. Finally,
the TR covered by the traced execution paths are counted, and the coverage for that
criterion can be calculated. Although the procedure described above can be implemented
without significant technical challenges, technological difficulties hinder the creation and
maintenance of these tools.

In order to mitigate the challenges of technology-dependent tools and help the
tester improving test suites, recent works have proposed the estimation of the coverage
value rather than its precise calculation. With a similar purpose, the focus of this Master’s
project is to predict the prime path coverage (PPC) of a test suite at class and method level
using regression analysis and the knowledge discovery in database (KDD) process.

We selected this criterion because 1) it subsumes most graph-based criteria
(including data-flow ones) [Ammann and Offutt 2016]. Indeed, in practical scenarios, it
shows more effective when confronted with edge coverage (EC) and edge-pair coverage
(EPC), especially in programs that have complicated control flows [Durelli et al. 2018].
Consequently, this criterion supports the tester to examine the power of the test suite with
more convinced; 2) nowadays, there are no working tools to support the tester to evaluate
the test suite based on this criterion.

2. Background

2.1. Test coverage criteria

The literature introduces diverse testing coverage criteria, but graph-based ones are
assuredly the most popular. Graph-based coverage criteria are subdivided into control

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

85



flow and data flow. As mentioned, this work focuses on prime path coverage, a control
flow coverage criterion. The PPC criterion is based on the definition of a simple path. A
simple path is a path in which no node appears more than once (i.e., no internal loops) and
only starting and ending nodes can appear more than once [Ammann and Offutt 2016]. A
prime path is a simple path that is not a sub-path of any other simple path [Li et al. 2009].
Consequently, the set of test requirements for PPC is composed of all prime paths of the
directed graph. When applied to source-code, the directed graph is called Control Flow
Graph (CFG), where a node represents an integral piece of code (basic block), and an
edge represents a possible control flow between two nodes.

The test requirements generated by the PPC criterion represent less trivial
uses of the SUT and are mainly attractive in high complexity SUTs. According to
[Ammann and Offutt 2016], in practical situations, PPC criterion subsumes node and
edge coverage criteria and data-flow criteria. It is subsumed only by the complete path
coverage (CPC) criterion, which is the strongest in graph coverage and defines all possible
paths of the graph as test requirements, being impossible to achieve in most cases. An
important consideration is that the PPC does not subsume edge-pair coverage (EPC) due
to the case when a node has a self-loop.

2.2. Knowledge Discovery in Database

Knowledge Discovery in Database (KDD) techniques can be used to support exploring
and analyzing new data and for analyzing old types of data in novel forms. The KDD is
a process of converting raw data into useful information, divided into three indispensable
phases: data pre-processing, data mining, and post-processing [Tan et al. 2005]. The
data pre-processing is an indispensable activity that will help improve the input data’s
quality and reliability and get the mining results. For this purpose, this first step focuses
on structure data into an appropriate format by gathering information from the different
accessible sources (raw input data). This step is possibly the most challenging and time-
consuming in the overall KDD process [Tan et al. 2005].

As a multidisciplinary field, the data mining phase uses many areas; one of these
is machine learning (ML), which refers to the automated detection of meaningful patterns
in data [Kirk 2014]. A primary notion in ML is the difference between supervised
and unsupervised learning. There is no distinction between training and test data in
unsupervised learning, whereas, in supervised learning, there are examples for the learner
(training process). Data mining tasks are divided into predictive tasks and descriptive
tasks. The goal of the predictive task is to use supervised learning to predict a value
(dependent variable) based on the values of other attributes (independent variables). In
descriptive tasks, the goal is to use unsupervised learning to derive data patterns, such as
clusters, anomalies, and relationships.

The classification and regression make up the predictive tasks, in which the first
is applied to predict categorical labels, and the second is widely performed for numeric
prediction. We conduct a regression analysis in this Master’s project because we want
to predict a test suite’s PPC value based on a set of numeric metrics. Finally, the post-
processing phase ensures that only legitimate and useful results are incorporated and used
to present knowledge to users. This step’s challenge is enabling anyone to absorb large
amounts of visual information and find patterns in it.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

86



3. Methodology

This research supports the tester to evaluate the quality of a test suite. We base our solution
on machine learning algorithms, using regression analysis algorithms to build a predictive
model based on source code metrics and basic test criteria. To evaluate the power of a test
suite, we used the PPC criterion, as justified in Section 1. For a clear understanding, we
summarized the phases to develop this study in Figure 1.

Theoretical
background Related Works ç

Identify
research gaps

Research
scope

Source code
metrics tools

Research
scope

Collection of
test paths and

TR
Calculation of

PPC
Training
datasets

MODEL CONSTRUCTION

Training
datasets

Selection of ML
algorithms

Improving
model accuracy

Predictive
models

Predictive
models

Experiments Results
analysis

Final results

MODEL VALIDATION

LITERATURE REVIEW DATASET CONSTRUCTION

Figure 1. Methodology overview.

Literature Review. This step aims to identify the gaps in the literature. First, we
searched for studies that proposed a solution concerning software testing and machine
learning. This phase’s findings allowed us to collect related works and construct
motivation for this project. After searching for works that apply machine learning to
support the tester in evaluating or improving the test suite’s quality, we inferred that there
was an opportunity to try to predict the value of more robust test coverage criteria and
support the tester. We looked for tools that generated the exact value of more strong
criteria, but we just found PESTT [Gameiro and Martins 2012], which is currently not
working.

As a result of the literature review efforts, we defined as our primary motivation
to investigate the use of more powerful criteria (in this work, PPC) because few studies
propose solutions to predict or calculate these criteria. We believe there are two reasons
for that: 1) few studies show practical evidence about the advantages of using strong
criteria and 2) testers assume weaker criteria (the ones supported by available tools) are
enough and, therefore, the culture for its usage is not created.

Dataset Construction. Supervised learning algorithms are applied to predict a
specific output (dependent variable) given inputs (independent variables), learning from
input/output pairs. In our approach, we want to explore the relationship of a single
dependent variable, the PPC, to several source code metric and edge coverage value. To
select the independent variables, we adopted three criteria: 1) should be obtained from
real-world projects; 2) must be fairly easy to extract; and 3) must represent factors that
describe the code at the method level.

At first, we selected working tools that generated metrics from the source code at
the class or method level. To this end, we conducted our search based on the systematic
mapping study conducted by Nunuez-Varela et al. in [Varela et al. 2017], in which they

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

87



present almost 300 source code metrics and various tools, collected from 226 studies.
Based on these tools, we determine the set of metrics that will be used to create the
datasets.

For the method level, 23 source code metrics were selected and collected using
the Understand tool1 for both test and application methods. Concerning the class-level
metrics, we selected 62 metrics that may have a relationship with the PPC of a test suite.
To collect these metrics, we applied the Understand tool and Jnose [Virgı́nio et al. 2019].
We also selected the edge coverage as a basic test coverage metric for both datasets due to
the vast majority of available tools that calculated it. All the defined metrics in class-level
and method-level were obtained from 12 open-source Java projects of different sizes and
domains. Table 1 summarizes the necessary information about the used projects.

Table 1. Summary of selected open-source Java projects.

Project Version LOC # Class # Method

Apache Dubbo 2.7.8 179.495 3.110 20.223
Jfreechart 1.5.0 134.540 1.039 11.146

Apache Commons Math 3.6.1 220.851 2.631 16.696
Apache Kylin 3.1.0 262.596 3.293 24.005

Apache Commons Lang 3.11 88.485 955 9.529
Biojava 5.4.0 184.935 1.657 14.519

Apache ServiceComb Java Chassis 2.1.1 163.933 3.703 17.178
Apache Commons Text 1.9 26.466 259 2.638
Apache Commons IO 2.6 32.345 312 2.741

Apache Submarine 0.4.0 51.971 510 3.256
Apache Commons Collections 4.4 66.910 907 7.384

Guava 29.0 511.607 11.887 63.142

To generate the test requirements, we preferred to use the web application
implemented by Wuzhi Xu at el. called Graph Coverage2 because it is widely applied
in the literature. However, to collect the test paths and calculate the PPC value, we will
need to develop an in-house tool that automates these activities, making it possible to
collect many instances for the dataset. Finally, we will carry out the KDD process’s pre-
processing data phase to generate the training data.

Model Construction. Based on our resulting dataset, we will study and apply
different regression analysis algorithms to generate the best predictive model. Combined
with the selection of models, if necessary, we will look for ways to improve the model’s
prediction performance, conducting activities such as hyper-parameter optimization. As
a result of this phase, we expect to generate the best model to predict PPC at the method
level and another best model to predict PPC at the class level.

Model Validation. To measure the predictive model performance, we will apply
the K-fold cross-validation [Kohavi 1995]. To measure the error, we will use well-known
metrics, such as Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE), and R-

1https://scitools.com/
2https://cs.gmu.edu:8443/offutt/coverage/GraphCoverage

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

88



Squared. Second, we will examine and explain the relationship between the dependent
and independent variables. After that, we will conduct experiments to simulate how
the regression model performs in predicting PPC values under a practical scenario, i.e.,
predicting the PPC of the test suite from unknown systems. Based on the results of the
experiments, we will be able to examine the feasibility of using our predictive models as
a tool to assist the tester in assessing the quality of a test suite in class and method level.

4. Contributions
This project aims at contributing to the software testing community in the following ways:

• Support the tester to evaluate the power of a test suite by using a prediction model
and a more strong criterion;
• Understand the relationship between source code metrics and PPC of a test suite

at the class and method level;
• Validate the approach by performing experiments to evaluate the predictive model

in a realistic scenario;
• Provide a public dataset that involves PPC criterion in open source projects,

making it available online.

5. Related Work
Durelli et al. [Durelli et al. 2019] gives a systematic mapping of the use of machine
learning in software testing and report that the most investigated topics are on test case
design, test oracle construction, test case evaluation, and test case refinement. A few
authors have proposed the use of ML to estimate the mutation score of a test suite
using different source data. Jalbert and Bradbury [Jalbert and Bradbury 2012] present
an approach to predict the mutation score of a unit under test based on a combination
of source code, test suite metrics, and node coverage information. Their model can only
predict mutation scores in a cross-version scenario (new release of the same project used
during the training phase).

With a similar goal, Zhang et al. [Zhang et al. 2019] introduce a proposal called
Predictive Mutation Testing (PMT), which uses the Random Forest algorithm to build
a classification model. The model can predict whether any new mutant is killed or
not based on the same set of features used in the training phase. PMT is also used
to predict the mutation score of the project based on the proportion of the mutants it
predicts will be killed. The work most similar to the one we are developing is Grano et
al. [Grano et al. 2019], they proposed the use of regression analysis to predict the branch
(edge) coverage of an automatically generated test set at the class level.

Acknowledgements
This work is partially supported by CNPq, Brazil. This study was financed in part by
the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) -
Finance Code 001.

References
Ammann, P. and Offutt, J. (2016). Introduction to Software Testing. Cambridge University

Press, 2 edition.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

89



Durelli, V. H., Delamaro, M. E., and Offutt, J. (2018). An experimental comparison of
edge, edge-pair, and prime path criteria. Science of Computer Programming, 152:99 –
115.

Durelli, V. H. S., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R. C., and
Guimarães, M. P. (2019). Machine learning applied to software testing: A systematic
mapping study. IEEE Transactions on Reliability, 68(3):1189–1212.

Gameiro, R. and Martins, F. (2012). Pestt educational software testing tool. Master’s
thesis, LaSIGE & University of Lisbon, Faculty of Sciences.

Grano, G., Titov, T. V., Panichella, S., and Gall, H. C. (2019). Branch coverage prediction
in automated testing. Journal of Software: Evolution and Process.

Jalbert, K. and Bradbury, J. S. (2012). Predicting mutation score using source code and
test suite metrics. In Proceedings of the First International Workshop on Realizing AI
Synergies in Software Engineering, RAISE ’12, pages 42–46, Piscataway, NJ, USA.
IEEE Press.

Jorgensen, P. C. (2013). Software Testing: A Craftsman’s Approach, Fourth Edition.
Auerbach Publications, fourth edition.

Kirk, M. (2014). Thoughtful machine learning: A test-driven approach. ” O’Reilly Media,
Inc.”.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 2, IJCAI’95, pages 1137–1143, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Li, N., Praphamontripong, U., and Offutt, J. (2009). An experimental comparison of
four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage. In 2009
International Conference on Software Testing, Verification, and Validation Workshops,
pages 220–229.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Varela, A., Perez-Gonzalez, H., Martinez, F., and Soubervielle-Montalvo, C. (2017).
Source code metrics: A systematic mapping study. Journal of Systems and Software,
128.

Virgı́nio, T., Santana, R., Martins, L. A., Soares, L. R., Costa, H., and Machado, I. (2019).
On the influence of test smells on test coverage. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, SBES 2019, page 467–471, New York, NY,
USA. Association for Computing Machinery.

Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y., and Zhang, L. (2019). Predictive
mutation testing. IEEE Transactions on Software Engineering, 45(9):898–918.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

90


