
Assessing JavaScript API Deprecation

Romulo Nascimento1, Eduardo Figueiredo1 (advisor), Andre Hora1 (co-advisor)

1Master’s in Computer Science
Graduate Program in Computer Science (PPGCC)

Computer Science Department – Federal University of Minas Gerais (UFMG)
Belo Horizonte – MG – Brazil

Admission: 08/2019 – Qualification: 10/2020 – Expected Final Presentation: 07/2021
{romulonascimento, figueiredo, andrehora}@dcc.ufmg.br

Abstract. Building an application using third-party libraries is a common
practice in software development. As any other software system, code libraries
and their APIs evolve over time. In order to help version migration and ensure
backward compatibility, a recommended practice during development is to
deprecate API. Although studies have been conducted to investigate deprecation
in some programming languages, such as Java and C#, there are no detailed
studies on API deprecation in the JavaScript ecosystem. The goal of this
master research work is to investigate deprecation of JavaScript APIs. In a first
assessment, we analyzed popular software projects to identify API deprecation
occurrences and classify them. We are now conducting a survey study with
developers to understand their thoughts and experiences on JavaScript API
deprecation. Lastly, we plan to develop a set of JavaScript API deprecation
guidelines based on this master research result. Initial results suggest that the
use of deprecation mechanisms in JavaScript packages is low. However, we
were able to identify five different approaches that developers primarily use
to deprecate APIs in the studied projects. Among these solutions, deprecation
utility (i.e., any sort of function specially written to aid deprecation) and code
comments are the most common practices in JavaScript. Finally, we found that
the rate of helpful message is high: 67% of the deprecation occurrences have
replacement messages to support developers when migrating APIs.

Keywords: API Deprecation, JavaScript, Software Library

CBSoft Events: SBES and SBLP

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

107



1. Introduction
Building an application using third-party libraries is a common practice in software de-
velopment. Libraries provide reusable functionality to client applications through their
Application Programming Interfaces (API). API usage brings several advantages to a
software development project [Tourwé and Mens 2003], such as cost and resources usage
reduction. As a result, developers can focus on business core requirements and software
quality may increase by relying on libraries that have been widely adopted, tested and
documented [Moser and Nierstrasz 1996].

As any other software system, libraries and their APIs evolve over time
[Granli et al. 2017]. Thus, functions and parameters might be renamed, updated, moved,
or removed. Consequently, client applications need to migrate to the latest stable ver-
sions of their dependencies [Bogart et al. 2016]. To help version migration and ensure
backward compatibility, a recommended practice in software development is to depre-
cate APIs. In other words, deprecation indicates that the use of a certain API should
be avoided because it will be changed, removed or discontinued in a future version
[Robbes et al. 2012].

Some of the most popular programming languages, such as Java and C#, provide
native support mechanisms and tools to help developers explicitly deprecate their APIs
[Sawant et al. 2018]. Indeed, recently, there have been many studies on deprecation prac-
tices and mechanisms mostly on those languages [Robbes et al. 2012, Bogart et al. 2016,
Brito et al. 2018, Li et al. 2018, Sawant et al. 2019]. However, to the best of our knowl-
edge, there are no detailed studies regarding API deprecation in the JavaScript ecosystem.

JavaScript has become popular over the last years [Santos et al. 2015]. According
to a Stack Overflow Survey1, JavaScript is the most popular programming language in
this platform for the eighth consecutive year. GitHub also reports that JavaScript is the
most popular language in terms of repository contributors2. Despite the growth on the use
of JavaScript external libraries and APIs, little is known about JavaScript API deprecation
mechanisms and practices. Unlike other popular programming languages, such as Java
and C#, JavaScript does not provide native deprecation mechanisms.

This master research project aims at contributing to the software engineering com-
munity in the following ways:

• Understand deprecation in the JavaScript ecosystem
• Investigate how developers deprecate JavaScript APIs
• Understand how developers react do JavaScript API deprecation
• Develop a set of guidelines on JavaScript deprecation best practices

In a first assessment, we analyzed popular software projects to identify depreca-
tion occurrences and classify them. We are now conducting a survey study with develop-
ers to understand their thoughts and experiences on JavaScript API deprecation. Lastly,
we plan to develop a set of JavaScript API deprecation guidelines based on this work re-
sult. Initial results suggest that the use of deprecation mechanisms in JavaScript packages
is low. However, we were able to identify five different approaches that developers pri-
marily use to deprecate APIs in the studied projects. Among these solutions, deprecation

1https://insights.stackoverflow.com/survey/2020
2https://octoverse.github.com

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

108



utility (i.e., any sort of function specially written to aid deprecation) and code comments
are the most common practices in JavaScript. Finally, we found that the rate of help-
ful message is high: 67% of the deprecation occurrences have replacement messages to
support developers when migrating APIs [Nascimento et al. 2020].

2. Related Work

Sawant et al. (2019) conducted several studies to investigate Java API deprecation prac-
tices. The authors assessed the impacts, the needs, the reasons, and the patterns of API
deprecation. They observed that the Java deprecation mechanism does not address all
developers needs when it comes to deprecation. The authors also detected that Javadoc is
not sufficient to understand the reasons behind deprecation occurrences; by mining other
data sources such as source code, issue tracker data and commit history, they identified
12 reasons that trigger developers to deprecate APIs. They verified that most API client
applications do not react to deprecation. Thus, they applied a survey to gather qualitative
data from developers and try to explain this behavior [Sawant et al. 2019].

Robbes at al. (2012) studied deprecation in the context of the Smalltalk ecosys-
tem. Brito et al. (2018) investigated the use of deprecation messages in Java and C#.
The authors describe that 66.7% and 77.8% of Java and C# APIs, respectively, are dep-
recated with deprecation messages and that this rate does not evolve over time. Li et al.
(2018) performed an exploratory study on Android API deprecation and identified that the
Android framework is regularly cleaned-up from deprecated APIs and their maintainers
ensure that deprecated APIs are commented to provide replacement messages. However,
those APIs are not consistently annotated and documented and the existing documenta-
tion is not frequently updated [Li et al. 2018]. Many papers investigate how APIs evolve,
measure breaking changes, and analyze their impact on client systems [Brito et al. 2019]
[Xavier et al. 2017]. However, none them covers the JavaScript ecosystem.

3. Proposed Methodology

This master research work aims at understanding JavaScript API deprecation. In order to
achieve its proposed goals and contributions, we have planned a set of methodology steps
to be performed during the course of the graduate program. Those steps are represented
in Figure 1. Each step may have one of three possible status: Done, In Progress or To Do.

Figure 1. Diagram summarizing the work plan for this project.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

109



As illustrated in Figure 1, the first step was a literature review, in which we
focused on understanding the state-of-art of API deprecation and development prac-
tices regarding deprecation. We could observe several studies on API deprecation cov-
ering several popular programming languages [Robbes et al. 2012, Bogart et al. 2016,
Brito et al. 2018, Li et al. 2018, Sawant et al. 2019]. However, we noticed that no pre-
vious work investigated the JavaScript ecosystem, which motivated us to study API dep-
recation on JavaScript projects.

The second and third steps were projects and developers mining. By analyzing
JavaScript code bases, we were able to identify deprecation occurrences. To compose the
required code base for this study, we selected the top-50 most popular JavaScript projects
according to the number of npm downloads.3. npm is a well known package manager for
JavaScript applications, which is a public collection of open-source JavaScript projects.
Therefore, the npm website is an indicator of project popularity and their amount of client
applications. npm states on their latest survey4 that 99% of JavaScript developers rely on
npm to ease the management of their project dependencies. This survey also points out the
massive growth in npm usage that started about 5 years ago. After selecting 50 candidate
projects, we downloaded their source code from GitHub, considering their latest stable
version on November 20th, 2019.

To collect data on JavaScript API deprecation from developers perspectives, we
searched for and randomly selected developers with contributions to JavaScript projects
on GitHub. We filtered out developers with more than 100 followers, as very popular
developers could be less likely to respond email surveys. We also removed developers
with less than 50 contributions in the last year, as we could not ensure they had been
actively working on JavaScript project recently. As a result, we currently found a sum of
14,480 developers.

To identify deprecation occurrences for further analysis, we performed a regular
expression based search to find deprecation occurrence candidates. Every time one or
more matches were found on a file, the file path and the code snippet were saved for further
investigation. To support our analysis and the identification of API deprecation candidates
in all 50 projects, we also used a JavaScript code parsing library, Flow5, to find the context
in which the API deprecation terms occur. We then exported the generated abstract syntax
trees (ASTs) to manually analyze the deprecation occurrences. We sampled 20% of the
abstract syntax trees and the respective code snippets for further manual investigation and
classification of deprecation mechanisms.

Table 1 shows the five possible JavaScript deprecation cases we found in our anal-
ysis. We empirically derived these cases by manually and carefully analysing the samples
of code snippets. If a certain occurrence does not fall in one of the proposed JavaScript
deprecation mechanisms, we classify into the Others category.

Using the five deprecation mechanisms described on the classification step, we
are currently designing a survey to collect data from developers regarding their opinions
on JavaScript API deprecation and the mechanisms we previously identified. The current

3https://www.npmjs.com/browse/depended
4https://cdn2.hubspot.net/hubfs/5326678/Resources/JavaScript%20Surveys/2019 npm survey FINAL.pdf
5https://flow.org/

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

110



Table 1. JavaScript deprecation mechanisms.
JS Deprecation Mechanism Description
JSDoc Use of the @deprecation

JSDoc annotation
Code comment Use of code comments

excluding occurrences of JSDoc
Deprecation utility Any sort of code function specially

written to aid code deprecation at any
complexity level

console.* Use of the JavaScript engine native
console API

Deprecation lists List of deprecated elements
Others Other adopted solutions

survey constitutes of six questions. The first three questions ask about developers experi-
ence on consuming deprecated APIs. Four and five, on the other hand, ask how often they
deprecate APIs and which mechanisms they usually adopt. Lastly, the open-ended sixth
question asks developers to share any thoughts, experiences or suggestions they might
have regarding deprecation mechanisms on the JavaScript ecosystem.

Next step is data analysis, in which we we plan to combine all data collated from
deprecation occurrences found by code source analysis and the survey results to answers
this master research questions and summarize our understanding on JavaScript depreca-
tion mechanisms and practices. By the end of this analysis, we expect to have some
research outcomes such as understating of how common API deprecation is in JavaScript
project and which deprecation mechanism or set of mechanisms are mainly used by de-
velopers. As secondary outcomes, we expect to describe characteristics of each mecha-
nism, along with its advantages and disadvantages, and understating developers reactions
to deprecation in JavaScript libraries. This analysis will provide us with inputs for the
JavaScript deprecation guidelines design.

As a final contribution and practical implication of this master research, we expect
to design and provide a set of JavaScript API deprecation guidelines, which will be heav-
ily based on our empirical findings. We hope to describe the best practices, recommenda-
tions, techniques and important considerations when deprecating APIs in JavaScript.

4. Preliminary Results
We found deprecation occurrences in 29 (58%) out of the 50 analyzed projects on the
deprecation occurrences identification step. The parsing tool extracted 1,279 depreca-
tion contexts from the 214 files analyzed. From those, we selected a random sample of
268 cases (20%) for manual analysis. As presented in Figure 2, the most frequent dep-
recation mechanism is deprecation utility. This case represented 88 (32.8%) out of 268
cases. From those 88 occurrences, we detect that 75 contain replacement messages to
support an API migration. Deprecation indicated by code comments represent 27 (10.1%)
of the cases. This represents the usage of code comments excluding occurrences of JS-
Doc. Only 4 of those code comments contain replacement messages. The adoption of
the @deprecated JSDoc annotation was identified 22 times (8.2%). However, only 10 of
those occurrences have replacement messages. Deprecation elements described trough
lists represent 6.7% of the analyzed sample (18 occurrences); 13 of those have replace-

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

111



Figure 2. Deprecation mechanism occurrences per category.

ment messages. The direct usage of console.* is the least present: 11 occurrences (4.1%),
from which 10 have clear replacement messages to aid developers.

Overall, the analyzed sample suggests that deprecation adoption in not highly fre-
quent in JavaScript APIs. However, 58% of all analyzed projects contain occurrences of
deprecation in our study. Moreover, JavaScript projects deprecate their APIs using depre-
cation utilities, often throwing console warnings. This mechanism represented 32.8% of
the studied sample. Using comments is also a common practice: considering both JSDoc
and general code comments together, they represent 18.3%. From the categorized depre-
cation occurrences, we find that about 67% have replacement messages. However, those
replacement messages are more common when the message is output to a console. To
summarize, we can learn that there is no standard approach to deprecate JavaScript APIs,
nor there is a single mechanism that is primarily used. Instead, we observe a few different
approaches that are used alone or combined.

5. Conclusion and Next Steps

This master research proposal aims at investigating deprecation in the JavaScript ecosys-
tem. This work can help developers better understand JavaScript API deprecation ap-
proaches and offer guidance on which mechanisms are more appropriate to a certain
project context. Results of our first study [Nascimento et al. 2020], in which we inves-
tigated deprecation practices of 50 popular JavaScript projects, suggest that the use of
deprecation mechanisms in JavaScript packages is low. However, we detect five different
ways that developers use to deprecate APIs: deprecation utility, code comment, JSDoc,
deprecation lists, and console messages. Among these solutions, deprecation utility and
code comments are the most common practices. Finally, we find that the rate of helpful
message is high. In this case, we detected that 67% of the deprecation occurrences have
replacement messages to help an API migration.

We are following the work plan provided in Section 3 by deepening our analysis
on deprecation mechanisms and conducting a survey with JavaScript developers. Finally,
we expect to conclude the research with a cross-analysis of source code findings and
survey results, and the proposal of a set of guidelines on JavaScript API deprecation best

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

112



practices to help and improve developers experience.

6. Acknowledgments
This research was partially supported by CNPq, CAPES, and FAPEMIG.

References
Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. (2016). How to break an api: cost

negotiation and community values in three software ecosystems. In International Sym-
posium on Foundations of Software Engineering (FSE), pages 109–120.

Brito, A., Valente, M. T., Xavier, L., and Hora, A. (2019). You broke my code: Under-
standing the motivations for breaking changes in apis. In Empirical Software Engi-
neering, pages 1–35.

Brito, G., Hora, A., Valente, M. T., and Robbes, R. (2018). On the use of replacement
messages in api deprecation: An empirical study. In Journal of Systems and Software,
vol. 137, pages 306–231.

Granli, W., Burchell, J., Hammouda, I., and Knauss, E. (2017). The driving forces of api
evolution. In International Workshop on Principles of Software Evolution (IWPSE).

Li, L., Gao, J., Bissyandé, T. F., Ma, L., Xia, X., and Klein, J. (2018). Characterising
deprecated android apis. In International Conference on Mining Software Repositories
(MSR), pages 254–264.

Moser, S. and Nierstrasz, O. (1996). The effect of object-oriented frameworks on devel-
oper productivity. In Computer, vol. 29, no. 9.

Nascimento, R., Figueiredo, E., Hora, A., and Brito, A. (2020). Javascript api depreca-
tion in the wild: A first assessment. In 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 567–571.

Robbes, R., Lungu, M., and Röthlisberger, D. (2012). How do developers react to api
deprecation?: the case of a smalltalk ecosystem. In International Symposium on Foun-
dations of Software Engineering (FSE).

Santos, A., Valente, M., and Figueiredo, E. (2015). Do javascript static analyzers detect
bad coding practices? In Workshop on Software Visualization, Evolution, and Mainte-
nance (VEM).

Sawant, A., Robbes, R., and Bacchelli, A. (2018). On the reaction to deprecation of
clients of 4 + 1 popular java apis and the jdk. In Empirical Soft. Engineering, vol. 23,
pages 2158–2197.

Sawant, A., Robbes, R., and Bacchelli, A. (2019). To react, or not to react: Patterns of
reaction to api deprecation. In Empirical Soft. Engineering, vol. 24, pages 3824–3870.

Tourwé, T. and Mens, T. (2003). Automated support for framework-based software. In
International Conference on Software Maintenance (ICSM), pages 148–157.

Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2017). Historical and impact analysis
of api breaking changes: A large scale study. In International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 138–147.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

113


