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Abstract. Highly-configurable systems provide significant reuse opportunities
by tailoring system variants based on a set of features. Those features can inte-
ract in undesired ways which may result in faults. Thus, we propose VarXplorer,
a dynamic and iterative approach to detect suspicious interactions. To evaluate
whether VarXplorer helps improving the performance of identifying suspicious
interactions, we performed two empirical studies. Our results shows that from
the VarXplorer graphs, participants are able to identify suspicious interactions
more than 3 times faster compared to the state-of-the-art tool. Additionally, the
iterative detection process provides a more efficient feature interaction analysis,
reducing the data developers needs to check to find problematic interactions.

Resumo. Os sistemas altamente configuráveis oferecem oportunidades signi-
ficativas de reuso, adaptando variantes do sistema com base em um conjunto
de features. Essas features podem interagir de formas indesejadas resultando
em falhas. Assim, propomos o VarXplorer, uma abordagem dinâmica e iterativa
para detectar interações suspeitas. Para avaliar se o VarXplorer ajuda a melho-
rar o desempenho da identificação dessas interações, realizamos dois estudos
empı́ricos. Nossos resultados mostram que, a partir dos grafos do VarXplo-
rer, os participantes identificaram interações suspeitas mais de três vezes mais
rápido em comparação com a ferramenta do estado da arte. Além disso, o pro-
cesso de detecção iterativa fornece uma análise mais eficiente das interações,
reduzindo a quantidade de informação que um desenvolvedor precisa verificar
para encontrar interações problemáticas.

1. Introduction
Highly-Configurable Systems (HCS), such as Software Product Lines (SPL), may be
composed of thousands of features (configuration options). The Linux kernel1, for exam-
ple, has more than 15,000 configuration options [Lotufo et al. 2010]. This large set of
options may be combined in different ways, generating millions of possible configurati-
ons and developers should ensure that all valid combinations work correctly. Additionally,

1https://www.kernel.org/
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interactions between two or more features may result in a surprising behavior that is not
easily deduced from the analysis of each feature separately.

Feature interactions can be classified as either expected or unexpected. Expected
(desired) interactions are related to features that are frequently combined to cooperate
and contribute to an intended behavior. However, most interactions cannot be predic-
ted upfront. These unexpected interactions can be further classified as either benign or
problematic for a system. Most unexpected interactions may result in a benign behavior
that does not cause any problem and might be crucial to integrate the functionalities of
multiple features. Problematic are undesired feature interactions that may cause faulty or
damaging system behavior. Identifying and classifying feature interactions is challenging
as they only appear in certain test cases and configurations.

While it might be relatively simple to specify the behavior of a feature in isolation,
anticipating and specifying all likely consequences of each feature interaction might not
be possible. Some of the reasons are related to the number of configurations and feature
interactions grow exponentially to the number of features; and the behavior of some inte-
ractions may be unpredictable in advance. Moreover, human effort is required, but people
usually do not like writing specifications.

To address those challenges, recent analyses focus on detecting feature interaction
problems from global specifications, i.e., specifications that all configurations of a system
need to fulfill. Usually, these approaches check global specifications based on syste-
matic sampling [Kim et al. 2013], combinatorial interaction testing [Cohen et al. 2007],
model checking [Li et al. 2005], and variational execution [Meinicke et al. 2016]. Howe-
ver, since specifications at the feature level are usually missing, the mentioned approaches
may not detect all incorrect system behavior, especially bugs not covered by global speci-
fications and bugs that do not result in either a crash or other easily observable behavior.

In this study, we investigate the state-of-the-art on feature interactions and support
developers on the detection of problematic feature interactions with VarXplorer. First, we
carried out a systematic mapping study to understand how do the existing approaches deal
with feature interactions in the community, which is the general question that drives the
research [Soares et al. 2018c]. Additionally, five more specific questions were derived,
regarding proposed solutions (RQ1), feature interactions types (RQ2), software lifecycle
(RQ3), software domains (RQ4), and empirical assessment methods (RQ5).

From the 40 studies identified, more than 60% of them either provide an initial
discussion on feature interactions or discuss how to identify interactions at early phases
of the SPL development. Often, detection strategies are partial and only address specific
points of a feature interaction investigation. On the one hand, when interactions are de-
tected, it is not possible to identify which interactions cause the problems. On the other
hand, when interactions are resolved with a specialized module or implementation chan-
ges, the previous step on how they came up with those interactions is not explained. In
addition, the set of existing approaches is strictly dependent on software specifications
[Soares et al. 2018c].

Based on the mapping results, we propose VarXplorer, a tool-supported ap-
proach that provides a dynamic feature interaction inspection process [Soares 2018,
Soares et al. 2018b]. Instead of upfront specifications as most of the approaches do, we
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propose to inspect feature interactions as they are detected and incrementally classify
them as either benign or problematic. VarXplorer is a dynamic approach automated by an
Eclipse plug-in to identify feature interactions without any previous system or feature spe-
cification. From a configurable system and its test suite, VarXplorer proposes an iterative
(runtime) analysis of interactions. For each test case, it creates a feature interaction graph
(FIG) as a representation of all feature interactions, and shows interaction-dependent va-
riables and feature relationships, such as the suppression of a feature by another.

The proposal was empirically evaluated through two studies. We run a controlled
experiment to investigate whether FIG could improve the efficiency of identifying feature
interactions compared to the state-of-the-art tool [Soares et al. 2018a]. Furthermore,
we performed a second study to understand how the VarXplorer iterative process may
improve and facilitate the identification of suspicious interactions [Soares 2019]. Our
results show that, when using VarXplorer, developers are three times faster to detect
interactions. Also, the VarXplorer iterative process reduces up to 50% the data produced
by interactions, which simplifies the detection process and makes it easier to find
problematic interactions.

The remainder of this paper is organized as follows. In Section 2, we introduce
the proposed VarXplorer approach. Section 3 presents a controlled experiment that inves-
tigates how the FIG can assist developers during interaction analysis. Section 4 presents
a second study to discuss the VarXplorer iterative process. Finally, section 5 summarizes
the research presented in this paper.

2. VarXplorer: Feature Interaction Inspection Process
In a pair of features that interact, a feature might enable, require, overwrite variables,
or even block the effect of another feature. Figure 1a shows an example illustrating the
behavior of unexpected interactions. It represents a code excerpt modeled after Word-
Press (wp), an extendable blogging and content management system.2 The example in-
volves five features, Weather, Smiley, Statistics, Fahrenheit, and Login.
Figure 1b shows two possible configurations among them. For Configuration 1, the featu-
res Weather and Fahrenheit interact intentionally to display the weather information
in a desired format. However, for Configuration 2, the feature Smiley interacts with the
Weather in an unintended way, although they do not crash the system. When they are
together in the same system, the temperature is not showed and the system presents an
unexpected output: (“[:weather,”).

Feature interactions can be detected by comparing the executions of all system
configurations. We use variational execution as an efficient method to compare executi-
ons [Meinicke et al. 2016]. In general, variational execution runs all program configura-
tions, often efficiently, by sharing redundancies of the executions and values among these
configurations. Additionally, our current approach focuses on pairwise feature interac-
tions. They have been proved to be an effective and practical method to test software
[Maity and Nayak 2005], especially with variational execution, where higher-order inte-
ractions are less common in practice [Meinicke et al. 2016].

Figure 2 shows how this process works for the WordPress example. In this
example, we focus on just two options, SMILEY and WEATHER (lines 1-13 of the code

2https://developer.wordpress.org/
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Figura 1. Code excerpt modeled after WordPress.

in Figure 1a. Depending on the conditions SMILEY and WEATHER, there exists four
execution paths, i.e., two options generate four possible combinations, as Figure 2a
shows. The number in the nodes indicates the number of the lines according to Figure 1a.
We observe that for all executions, lines 5 and 6 are always executed. In turn, lines 7
and 9 are only executed in certain configurations. Line 7 is executed when SMILEY
is selected; and line 9 is executed when WEATHER is selected. Figure 2b shows how
the variational execution works: a single run, instead of four, sharing all common parts
among the executions and showing the differences. The main idea is to split the execution
when the code presents differences and join again when it has to execute the same code.
As data and control flows are shared, we are able to observe feature interactions in the
differences of the execution and assignments of data [Meinicke et al. 2016].

Based on variational execution, we introduce VarXplorer, an iterative analysis and
tool to inspect feature interactions [Soares 2018, Soares et al. 2018b]. Figure 3 shows an
overview of our approach that proposes to incrementally analyze interactions. Given a
configurable system and its test suite, we execute test cases (system inputs) looking for fe-
ature interactions. The developer then explores which interactions are problematic. Each
test execution generates a FIG, a concise representation of all pairwise interactions among
features. Based on the variational execution of a system, the FIG provides a visualization
of which features interact, in addition to present their relationships and data context.

Only revealing which features interact (raw interactions) may not provide the de-
veloper with enough insights to identify whether a certain interaction is benign or proble-
matic. For example, two features A and B may collaborate together to deliver some correct
system behavior. However, under specific system inputs, the functionality provided by B
may be suppressed by A in an unintended way. To understand the relationship between
features, we propose to investigate the relation that a feature may have over others, such
as suppressing or requiring another feature. Interaction relationships may additionally be
associated with the data context of the interaction, as the variables involved in the relation,
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Figura 2. WordPress example executed with a traditional approach versus varia-
tional execution.

Figura 3. Overview of our approach.

for instance. The different values that a given variable may assume can be a signal that
something wrong occurred.

Figure 3 shows the VarXplorer iterative process. VarXplorer is incremental in the
sense that all tests of a test suite should be executed sequentially. We propose to start from
smallest tests to the most complex ones. Each individual test creates a FIG, which based
on developer inspection, it is automatically refined by removing benign interactions. This
refinement is supported through a feature interaction specification language (FILang) to
ensure that: (i) the developer does not see benign interactions again in future iterations
(i.e., when executing other test cases); and (ii) any newly detected unintended interactions
will be flagged in the future.

To analyze all the likely feature interactions on a system, the feature interaction de-
tection should be applied over different inputs to achieve a high system coverage. Howe-
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ver, when applied over real systems, the FIG may present a large amount of interactions
and conditional variables. In addition, different FIG from different test cases may share
the same interactions. Although the input may be different, some pairs of feature may
interact in the same way, such as, overwriting the same variables with the same values. In
this way, the FILang represents a lightweight strategy to indicate that there is an interac-
tion among features.

Based on the FILang, developers automatically create feature interaction specifi-
cations when marking interactions as either allowed or forbidden (right click on the line
that connects two features) in the FIG. When allowing, they may remove interactions
from features that are intended to interact, which “cleans” the graph and can facilitate fin-
ding interactions that represent a bug. Conversely, an interaction flagged as forbidden in
a graph can be tracked throughout all test cases executions to point out the cases when it
may occur. The FILang does not require a formal description of the behavior of systems
or features, as global and feature-based specifications do. Furthermore, those behavior
specifications are usually missing. In particular, feature interaction specifications can be
created according to three parameters: type (Allow, Forbid), relationship (Require, Sup-
press, Any), and target (Variable, Method, Class, Any).

2.1. Feature interaction detection

In the interaction detection process, we identify and analyze all pairs of features that
interact in a system. The input of the detection is a variational trace created from exe-
cuting a test case, and the output is the FIG presenting all the interactions. The creation
process of the FIG has two major steps: pairwise detection and relationship analysis
[Soares et al. 2018b]. From the variational execution, we identify the pairs of features
that interact and create a basic feature interaction graph (bFIG). Then, we perform the
relationship analysis and refine the bFIG to include the underlying variables affected by
the features to produce the complete FIG.

Pairwise detection. For pairwise detection, we collect a set PC with all the presence
conditions in data and control flow present in the variational trace. PC contains all the
conditions that shows how the features interact in the system. Control flow conditions
are path conditions of the trace, and data flow conditions are formed by the conditions on
each system variable. From PC, we identify all pairs of features that interact together by
finding feature pairs that occur together in the same condition.

Given a pair of features (f1 , f2 ), we assume that there is an interaction between
f1 and f2 if there is at least one presence condition p P PC in which f1 and f2 occur
simultaneously as literals in p:

f I p :“ f occurs as literal in p (1)

I “ tpf1, f2q | p P PC^ pf1 I pq ^ pf2 I pqu (2)

From Equation 1 and 2, we are able to collect all pairwise interactions. We use them
to create the bFIG, a simple visualization of all interactions identified in the trace. For
example, Figure 4 shows the execution of the WordPress (wp) example, corresponding to
the code in Figure 1a. The figure 4 shows the presence conditions identified during the
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Figura 4. Variational trace of the WordPress example.

variational execution that add or change any functionality during the execution. Control-
flow conditions are showed as arrows and data-flow conditions are showed in the rounded
rectangles.

The WordPress example has five features: SMILEY (S), WEATHER (W),
FAHRENHEIT (F), STATISTICS (T), and SECURE LOGIN (L). PCwp represents the
set of presence conditions of the Wordpress example. The PCwp collected from Figure 4
has eleven unique presence conditions, as follows: S, S,W, W,T, T,W ^ F,W ^

 F,W ^ F ^ S,W ^ F ^ S, S ^ W .

Based on the above equations, we identified three interactions (Iwp) in the entire
set of presence conditions PCwp, i.e., Iwp = {(F, W), (S, F), (S, W)}. Figure 5a shows
the bFIG for our running example, illustrating the interactions in Iwp. Although the pro-
gram contains 5 features, only 3 out of them interact with each other. The remainder
are non-interacting features; they either do not interact with any other feature during sys-
tem execution or are not executed in any configuration related to the current test case.
Although the bFIG shows which features interact with each other, it does not provide
enough insight on how features interact. Thus, we also analyze each pair of features to
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(a) bFIG (b) Flow-based analysis (c) Variables detection (d) Variables analysis

Solid black line: interaction. Dashed line: data flow interaction. Dashed line around the feature: features
that has no effect in the execution. Red arrow: suppress relationship. Green arrow: require relationship.

Figura 5. Creation process of the WordPress FIG.

determine its relationship and the variables involved.

Relationship analysis. In this step, we investigate each pair to determine the effect one
feature has on the other. We provide two complementary analysis: PC-based analy-
sis and data-based analysis [Soares 2018, Soares et al. 2018b]. In the former, we explore
presence conditions on control and data flow to identify which relation a feature may have
over the other (i.e., either suppress or require other features). The latter is responsible for
investigating variables that are controlled by more than one feature. Thus, we identify fea-
ture relationships exclusive to variables. For example, a feature f1 may not present an ove-
rall suppression on the feature f2 , but f1 may suppress f2 in relation to a given variable.

A feature effect specifies under which condition a given feature has an effect on
the trace. If a feature f1 has no effect on the trace, then the selection of f1 never adds
nor changes any functionality that was not present before [Nadi et al. 2014]. In the bFIG
of Figure 5a, the dashed feature L is not active and, therefore, L has no effect in the
WordPress trace. To the other features of the graph, T, F, S, and W (circles with solid
lines), they have been executed and add functionalities to the execution. For example, to
feature S have an effect on the execution of Figure 1a, the variable time must contain the
current time and it has to be printed, i.e., lines 15-16 need to be executed.

In addition, we can analyze the effect of features on each other based on their
relationships. We define two effects, also called relationships, suppress and require, as
follows:

Definition 1. Let f1 and f2 be the two features of an interaction pair. We say that f1
suppresses f2 when the suppressed feature f2 has no effect if the feature f1 is selected.

Definition 2. A feature f1 requires feature f2 when f1 has an effect only if the feature f2
is selected.

Relationship based on PC. Formally, the effect of a feature f on a condition p is given
as the function Upf, pq, as follows:

Upf, pq “ prf{Trues ‘ prf{Falses (3)

The function Upf, pq give us the condition in which f has effect in p, using xor (‘). A
feature f has no effect on p if enabling it (f as True) or disabling (f as False) it does not
affect the value of p; therefore f does not have an effect on selecting the corresponding
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code fragment under the condition p. In other words, we say that feature f has no effect
in condition p if pf Ð Trueq is equivalent to pf Ð Falseq, where pf Ð yq3 means
substituting every occurrence of f in p by y. When changing the feature to false or true,
and the execution did not present any difference, it is because the feature has no effect on
that program.

Otherwise, a feature f has an effect on p when enabling and disabling the feature
in p, it presents a different result at least for one configuration, which means that diffe-
rent code fragments are executed. This method of verifying whether a feature is enabled
or not is known as unique existential quantification [Nadi et al. 2014]. For example, to
determine the effect of feature FAHRENHEIT (F ) on the presence condition W ^ F , we
would substitute F with True and False, as follows:

UpF,W ^ F q “ “ prf{Trues ‘ prf{Falses

“ pW ^ F qrF {Trues ‘ pW ^ F qrF {Falses

“ pW ^ Trueq ‘ pW ^ Falseq

“ W

(4)

Thus, on the code blocks that the condition pW ^ F q holds, F has an effect if and only
if (iff) W is selected. Similarly, we can determine the overall effect of a feature g taking
in account all conditions in PC. In this way, we need to consider the disjunction of all
feature effects of g on each presence condition p P PC:

Upg,PCq “
ł

pPPC

Upg, pq (5)

The result of Equation 5 corresponds to the condition under which a feature g has an effect
on the whole system’s presence conditions. Hence, we can now determine the effect of F
on the whole WordPress execution, which is given by the disjunction of all feature effects
considering all the 11 presence conditions of the Wordpress (PCwp). Thus, the effect of
F on the whole program is calculated as:

UpF,PCwpq “tUpF, Sq _ UpF, Sq _ UpF,W q _ UpF, W q_
UpF, T q _ UpF, T q _ UpF,W ^ F q_

UpF,W ^ F q _ UpF,W ^ F ^ Sq_

UpF,W ^ F ^ Sq _ UpF, S ^ W qu
UpF,PCwpq “W

In this case, it confirms that F only has an effect iff W is selected, considering the whole
program, and not only one single condition. The Equation 5 identifies explicit relati-
onships between features (suppress and require). We say f2 suppresses f1 in an execution
with presence conditions PC iff the result of the following equation is a tautology:

f2 ùñ  Upf1,PCq (6)

Otherwise, we say f1 requires f2 in a trace iff the result of Equation 7 is a tautology:

 f2 ùñ  Upf1,PCq (7)
3p is implicit in this notation.
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For example, the effect of the feature FAHRENHEIT (F ) on the WordPress execution
results in UpF ,PCwpq “ W . Thus, F requires W in order to have an effect on the
system, i.e.,  W ùñ  UpF,PCwpq is a tautology. This behavior can be observed in
Figure 1a: line 25 is only executed when the decision in line 8 is true, which calls the
method getWeather() in line 8. Then, we see that F is a sub-feature of W . From the
domain knowledge, we know that this is an example of an intended cooperation in terms
of a require relationship between those two features.

In contrast, if F would only have an effect iff  W , then W would suppress F
(i.e., F would be blocked by W , which would be a bug). To conclude our analysis, we
need to perform the same analysis for each pair of features to determine the effects of each
feature in an interaction. Figure 5b shows the result of the relationship analysis based on
PC for our running example. It presents the feature effect analysis for all pairs in PCwp.
In this case, we only found an explicit feature effect in the interaction pF,W q, which is a
require relationship. The other two interactions, pS, F q and pS,W q, did not expose any
explicit flow relation. To further explore additional relationships between features, we
complement the flow analysis with a data analysis.

Relationship based on data. In HCS, the same variable can assume different values
under different configurations. Features that do not directly interact on the control flow
may still interact by controlling the same variables. Conditional variables are variables
in which the values depend on more than one feature. Unexpected data values may re-
veal bugs from unintended interactions on variables. In this data analysis step, we further
perform two main tasks: (i) we collect the data context of interactions, based on the
variables they interact on; and (ii) we analyze feature effects on data to find feature re-
lationships related to variables (e.g., a feature may suppress another related to a given
variable) [Soares 2018, Soares et al. 2018b].

Thus, we investigate each conditional variable to analyze the context of data inte-
ractions. A variable context is the set of conditions that affect the value of one variable.
From the variable context analysis, we can identify all pairs of features that interact on
the variable’s value. To identify feature interactions in variables (data interaction), we
consider the same Equation 2, but replace the set of presence conditions PC with the
context of a given variable. For instance, the WordPress example has three variables (c,
weather, and time), but just two (c and weather) are conditional variables. Since
the variable time only depends on feature T (Figure 1a), it is not part of any data inte-
raction. The graph in Figure 5c shows all variables involved in WordPress’ interactions.

To help developers understand what is happening in each variable, we detect re-
lationships on variables and present them in the graph. Thus, we again investigate the
feature effect of each feature pair, but now only related to the presence conditions of the
variable being analyzed. The analysis of feature effect per variable is analogous to the
analysis of the entire set of presence conditions PC, describe in Equation 5. The only
difference is: in place of PC, we use the context of a variable [Soares et al. 2018b].

As a result, we found that SMILEY (S) suppresses WEATHER (W) in relation to
variable c. When S is present in the configuration, W effect is blocked in the program
and, thus, W cannot override the value of variable c as it should. Furthermore, S also
suppresses FAHRENHEIT (F) in relation to c. Therefore, S suppresses both WEATHER
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and FAHRENHEIT. Figure 5d shows the complete FIG for our WordPress example.
Since those new relationships do not cover all the information of a feature, but just the
variable analyzed, we call them partial relationships and they are represented as dashed
directed arrows.

3. Controlled experiment
We performed a controlled experiment to understand how FIGs can help users identify
problematic interactions [Soares et al. 2018a]. The study investigates and compares the
ability of users to identify problematic interactions with and without VarXplorer, in a
setting with different tasks and systems. Therefore, we compare VarXplorer to the current
state-of-the-art tool in the area, Varviz [Meinicke et al. 2016]. Varviz is an Eclipse plug-
in that enables programmers to use variational traces for debugging interaction faults. We
aimed to answer the following main question: Does VarXplorer help developers identify
suspicious feature interactions?, which we split into two concrete research questions:

• RQ1: Does VarXplorer improve the performance of identifying suspicious inte-
ractions compared to Varviz?

• RQ2: How does the interaction graph presented by VarXplorer help understand
the suspicious interactions in a program?

Before the main experiment, we conducted two pilot studies with 8 graduate stu-
dents from 2 universities in Brazil and in the US. After that, the real experiment was
executed with 24 participants from different universities and companies in Brazil. We
measured the effort to identify a buggy interaction based on the information provided by
the FIG. We used two systems very used in the literature once they contain many inte-
ractions: Elevator [Plath and Ryan 2001] and Telephone [Griffeth et al. 2000]. Then, we
compared VarXplorer with Varviz [Meinicke et al. 2016].

We designed our experiment as a within-subjects study. For this design, the same
group of participants receives more than one treatment. In this way, all participants per-
formed tasks using both tools, VarXplorer and Varviz. We designed two tasks, one for
each system. The tasks were designed to be similar in size, number of features, and time
to be executed. The pilots served to align them. In general, we asked the participants to
use the tool given to them (either VarXplorer or Varviz) to identify suspicious interactions
on the systems for a given test case. The tasks were designed to present just one suspi-
cious interaction for each system and a couple of benign interactions. We provided the
participants with the description of each feature in the target system, test case scenario
documentation, and the system’s source code.

For the statistic analysis of our data, we conducted an analysis of variance using a
within-subjects ANOVA. It is a parametric test for determining whether significant diffe-
rences occur in an experiment containing two or more conditions. We used the Shapiro-
Wilk normality test, the Bartlett test of homogeneity of variances, and the Tukey HSD
test to the multiple comparisons of means. As a result, we found that participants using
VarXplorer outperformed participants using the Varviz tool. The former group took on
average 3 min to perform each task (finding the problematic interaction), while the latter
had on average 9 min. All the participants could identify the suspicious interaction in both
tasks, which is why we compare time and not also correctness. Thus, all of them finished
successfully their tasks.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

158



Even though we designed our experiment to avoid learning effects and tool/system
order influence, we still performed the ANOVA test on the groups to check whether the
order they used the tools and systems had any influence on the results. For the systems
group, the data from the order of the systems were not different, i.e., the order of the
systems does not statistically influence the results (p-value = 0.803). For the tools groups,
it presented a large effect size between the groups that used VarXplorer against the Varviz
groups. According to the ANOVA test, we got statistically significant evidence that our
groups have different averages (p-valueă 2e-16). Thus, the order of the systems does not
matter to the evaluation.

In order to analyze the interactions in the tools order group, we performed a Tu-
key HSD test [Heiman 2013]. We saw a small learning effect when Varviz is used after
VarXplorer (p-value = 0.0378). This situation occurs because the participants learn from
VarXplorer graphs, i.e., they learn about relationships between features and start to expli-
citly look for them in the Varviz trace. Although the systems presented a small difference,
this situation did not significantly affect the analysis of variance: this effect is tiny com-
pared to the overall effect size. The fastest Varviz time is still significantly slower than
the slowest VarXplorer time.

We also performed a qualitative analysis based on experiment video and audio
recordings, and interviews. From the qualitative analysis, we leveraged the following
observations:

• The types of feature’s relationships guide the analysis and decrease the analysis
time;

• To use VarXplorer, the developer may not need to know details of the implemen-
tation and programming language;

• VarXplorer shows non-interacting features and no-effect features, which also
might be indicatives of bugs;

• VarXplorer and Varviz may complement each other.

The results confirmed that the VarXplorer relationships graphically represented
as arrows and colors in the FIG can make the developer’s work easier and faster. Also,
VarXplorer only shows conditional variables, which reduces the amount of information
shown to developers [Soares et al. 2018a].

4. Exploratory study
We performed an exploratory study complementary to the controlled experiment
[Soares 2019]. Instead of just evaluating the FIG, the second study explores the entire
approach to investigate how the iterative and interactive approach may support the disco-
very of suspicious interactions. We aimed to answer the following question: How does the
iterative process on individual test cases reduce the complexity of identifying interactions?

Iterativeness stands for the potential to optimize the interaction detection through
short iterations in sequence and each iteration has a self-contained program scenario, com-
posed of one test case analysis. The iterative analysis consists of executing in sequence all
test cases of a test suite. A single test case is analyzed at a time, which produces one FIG
with all possible interactions and relationships among the features for the given scenario.
When looking at all tests at once one gets overwhelmed with warnings, but when looking
at one test at a time the analysis remains reasonable and guides the effort.
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In this study, we were also interested in understanding how much effort we could
save using interaction specifications when executing test cases. Whenever a developer
allows or forbid an interaction in the graph, the tool creates the corresponding specifi-
cation and saves it in the system. When executing a given test case, VarXplorer always
applies specifications created in previous FIG of that system to create the current FIG.
Thus, we compare the size of FIG without applying specifications (complete graph) ver-
sus the reduced graph, when known interactions are removed. Consequently, we measure
how many interactions are removed during the iterative process.

We conducted this study on the basis of the RiSE Event SPL, which supports orga-
nizers of a conference [Neto et al. 2016]. The test suite of the SPL contains 15 test cases
(T1-T15). We executed the tests in order of complexity, from the smallest to the most
complex test (increasing number of features and test activities). The analysis procedure
consisted of running each test separately until we have tested all system functionalities.
Thus, every test case is run after the analysis of its preceding case. When executing a given
test case, the variational execution tests all combinations among the features of that test in
one single execution. Hence, the test suite does not need to contain one test to each con-
figuration. Consequently, the variational execution reduces the need for additional tests.

To analyze interactions, developers have to check the FIG and judge them as either
benign or suspicious. If developers identify suspicious interactions, we suggest them to
look for the causes of the problem and fix them in the source code before running the
next test case. Then, they may have to run the test again and check the graph after the
fix to guarantee the problem has been fixed. At this point, the FIG created after the fix
should not contain the same interactions, once the source code may have changed. Thus,
it may contain new interactions, and prior interactions related to the fixed bug may not
appear anymore. Hence, this graph need to be checked again, and the process should
restarts. The interactions of this new FIG should be checked until all interactions have
been understood.

During interaction analysis of the RiSE Event SPL, we observed that the use of re-
duced graphs (when known interactions are removed) decreased by about 50% the amount
of information that the user needs to analyze to identify suspicious interactions. Speci-
fications clean the graphs to help developers focus on new interactions that are likely to
present problems. For example, the test of number #10 (T10) had 19 interactions, but 11
interactions and 58 variables were removed from specifications [Soares 2019]. The user
only had to judge the 8 remaining interactions showed in the reduced graph. The others
were present in the previous tests (T1 - T9), being previously marked as benign. For T10,
the user had about 58% less interactions and almost 45% less variables to analyze when
using the specifications provided by VarXplorer. As the test cases grow and features are
repeated over tests, many interactions are repeated among them.

The test suite presented a total of 431 conditional variables and 143 different inte-
ractions. 118 were require interactions and 25 were suppress interactions, scattered over
15 tests. 11 suppress interactions and 6 require interactions presented problems. Thus, 6
out of 15 tests presented feature interaction problems, which shows that 40% of the total
of tests had problems. 17 interactions out of 143 were problematic, which represents less
than 12% of the total interactions. As expected, most of the interactions that appeared in
the FIGs were benign. Our results show that the feature relationships (require and sup-
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press) may indicate the presence of undesired interactions, which assist developers during
feature interaction analysis.

Additionally, we did not find any problem that led the program to a crash. Most
of the problems were related to lack of source code modularity and incorrect implemen-
tation, such as, wrong variable overwrite and misalignment of if statements. When those
problems only appear in the combination of features, they are harder to be identified by
common strategies, since it is necessary to test all interactions.

5. Concluding Remarks
Our work pursued a twofold goal, mapping the state-of-the-art on feature interactions
and identifying problematic interactions without upfront specifications. We developed an
inspection process supported by VarXplorer that provides an automatic way to identify
feature interactions based on the software execution. From the execution of a test case,
we analyzed interactions based on its control and data flow. Moreover, we presented
additional indicators that can help developers to identify which interactions may represent
a bug, such as the suppression of one feature by another and the variables involved in the
interaction. To validate our approach, we performed two empirical studies that confirmed
VarXplorer is three times faster to detect buggy interactions than the state-of-the-art tool.
Further studies could investigate a test case generation process to use in combination
with our approach to cover the most representative inputs of a given system. In addition,
scalability analysis studies could also be carried out.
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Soares, L. R., Meinicke, J., Nadi, S., Kästner, C., and de Almeida, E. S. (2018a). Explo-
ring feature interactions without specifications: A controlled experiment. In 17th Int.
Conf. on Generative Programming, pages 40–52.
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