
Automatically Fixing Static Analysis Tools Violations
Extended Abstract

Diego Marcilio1,2, Rodrigo Bonifácio2

1USI Università della Svizzera italiana, Lugano, Switzerland

2Computer Science Department, University of Brası́lia (UnB), Brası́lia, Brazil

Abstract. Static analysis tools analyze source code to find deviations, or viola-
tions, from recommended programming practices defined as rules. A warning
is raised when a piece of code violates any rule. Even though these tools can
help to identify defects, developers still face several barriers when using them.
Among the challenges are the significant number of reported warnings, often
caused by false-positives, and the need to devise fixes, a repetitive and error-
prone process. In this work, we addressed these two difficulties in two stages:
1) we identified which kind of rules are mostly fixed by Java developers when
using SonarQube (a widely used static analysis tools); 2) we implemented a tool
that provides automatic fixes for a subset of the previously commonly fixed found
rules. The results obtained indicate that providing automatic fixes for commonly
fixed warnings is feasible and welcomed by developers.

Resumo. Ferramentas de análise estática analisam código-fonte definem re-
gras para encontrar desvios de práticas recomendadas de programação. Um
alerta é lançado quando um trecho de código viola uma ou mais regras. Esta
análise pode encontrar defeitos de software de forma antecipada, No entanto,
programadores encontram diversas dificuldades na adoção dessas ferramentas.
Dentre os principais desafios estão o alto número de alertas, comumente cau-
sado por falso-positivos, e a necessidade de se idealizar e implementar uma
correção, o que pode ser um processo repetitivo e passı́vel de erro. Nesse tra-
balho, nós abordamos essas duas dificuldades em duas etapas: 1) nós identifi-
camos quais regras são mais corrigidas ao analisar projetos Java que usam a
ferramenta SonarQube (dentre as mais utilizadas no contexto de projetos Java);
2) nós implementamos uma ferramenta que fornece correções automáticas para
um subconjunto dessas regras comumente corrigidas. Nossos resultados in-
dicam que prover correções automáticas não é só viável, como é bem recebido
por desenvolvedores.

Static code analysis tools (SATs) are well known for detecting possible sources of
defects earlier in the software development process. They provide ways to detect prob-
lems quickly – bugs, bad practices, and code uncompliant to style choices – in particular
because SATs do not need to run programs: they work statically on the source or byte
code. Although having the potential to detect a vast and diverse set of problems swiftly,
SATs are infamously known for being imprecise. It is not uncommon to observe thou-
sands of warnings being reported when these tools execute in a project for the first time.
Moreover, understanding the reported problems and coming up with a proper fix is often
a nontrivial task.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

163



The research that comprehends the first author’s master the-
sis [Marcilio et al. 2019a, Marcilio et al. 2019b, Marcilio et al. 2020] aimed to improve
the practical usability of SATs by automatically providing fix suggestions: source code
modifications that make it compliant with the rules checked by the analysis tools.

First [Marcilio et al. 2019a], we investigated SonarQube’s usage on hundreds
of systems from two large open-source foundations (Apache Software Foundation and
Eclipse Foundation) and two Brazilian Federal Government institutions. We also sur-
veyed 18 developers of the analyzed projects by asking 6 closed questions. Our analy-
ses showed that only 8.76% of the violations were fixed, even though practitioners find
SATs’ reports relevant—rejecting pull-requests or even postponing releases based on its
outcomes. We found that 20% of the rules – from the almost 422 thousand violations we
mined – correspond to 80% of the fixes.

We then developed SpongeBugs [Marcilio et al. 2019b, Marcilio et al. 2020] on
the assumption that frequently fixed violations are more likely to correspond to real is-
sues of practical relevance. We selected 11 rules among the most widely used from a
combined dataset of 1,033 projects with 18 million violations. SpongeBugs can fix viola-
tions in a completely automatic, precise, and scalable manner. Even though SpongeBugs
leverages lightweight transformations techniques to achieve its precision and effective-
ness, some of the rules involve intricate modifications, such as altering multiple lines and
introducing fields and variables. We submitted 946 fixes spanning 38 pull-requests to var-
ious well-established open-source projects, including the Eclipse IDE, SonarQube, and
SpotBugs. Project maintainers accepted 825 (87%) of those fixes—most of them (97%)
without modifications. SpongeBugs removed 85% of all violations (∼7.5K) of the con-
sidered rules in the analyzed projects. All of its fixes compiled successfully, and only
0.6% of them were identified as false positives. SpongeBugs is also scalable to large
projects, as it can run in under 10 minutes on projects as large as half a million lines of
code.

Providing developers with automatic fixes for SATs’ violations can be feasible
and well-received. By automatically fixing violations that frequently appear, we can free
developers to focus on more urgent and complex tasks, such as developing new features
and fixing bugs.

References
Marcilio, D., Bonifácio, R., Monteiro, E., Canedo, E., Luz, W., and Pinto, G. (2019a). Are

static analysis violations really fixed?: A closer look at realistic usage of SonarQube. In
Proceedings of the 27th International Conference on Program Comprehension, ICPC
’19, pages 209–219, Piscataway, NJ, USA. IEEE Press.

Marcilio, D., Furia, C. A., Bonifácio, R., and Pinto, G. (2019b). Automatically generat-
ing fix suggestions in response to static code analysis warnings. In 19th International
Working Conference on Source Code Analysis and Manipulation, SCAM 2019, Cleve-
land, OH, USA, September 30 - October 1, 2019, pages 34–44. IEEE.

Marcilio, D., Furia, C. A., Bonifácio, R., and Pinto, G. (2020). Spongebugs: Automati-
cally generating fix suggestions in response to static code analysis warnings. Journal
of Systems and Software.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

164


