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Abstract. Up to 60% of the refactorings in software projects are constituted
of a set of interrelated transformations, the so-called batches (or composite
refactoring), rather than single transformations applied in isolation. However,
a systematic characterization of batch characterization is missing, which ham-
pers the elaboration of proper tooling support and empirical studies of how
(batch) refactoring is applied in practice. This paper summarizes the research
performed under the context of a Master’s dissertation, which aimed at taming
the aforementioned problems. To the best of our knowledge, our research is
the first work published that provides a conceptual foundation, detection sup-
port and an large impact analysis of batch refactoring on code maintainability.
To this end, we performed two complementary empirical studies as well as de-
signed a first heuristic aimed at explicitly detecting batch refactorings. Our first
study consisted of a literature review that synthesizes the otherwise scattered,
partial conceptualization of batch refactoring mentioned in 29 studies with dif-
ferent purposes. We identified and defined seven batch characteristics such as
the scope and typology of batches, plus seven types of batch effect on software
maintainability, including code smell removal. All batches’ characteristics and
possible impacts were systematized in a conceptual framework, which assists,
for instance, the proper design of batch refactoring studies and batch detection
heuristics. We defined a new heuristic for batch detection, which made it possi-
ble to conduct a large study involving 4,607 batches discovered in 57 open and
closed software projects. Amongst various findings, we reveal that most batches
in practice occur entirely within one commit (93%), affect multiple methods
(90%). Surprisingly, batches mostly end up introducing (51%) or not remov-
ing (38%) code smells. These findings contradict previous investigations limited
to the impact analysis of each transformation in isolation. Our findings also
enabled us to reveal beneficial or harmful patterns of batches that respectively
induces the introduction or removal of certain code smells. These patterns: (i)
were not previously documented even in Fowler’s refactoring catalog, and (ii)
provide concrete guidance for both researchers, tool designers, and practition-
ers.
Keywords: batch refactoring, code smell, literature review, internal structural
quality

Resumo. Até 60% das transformações em projetos de software são constituı́das
de um conjunto de transformações inter-relacionadas, os chamados lotes (ou
refatorações compostas), ao invés de aplicadas isoladamente. No entanto, a
caracterização sistemática sobre lotes é faltante, isso dificulta a elaboração
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de ferramentas apropriadas que suportem refatoração e estudos empı́ricos so-
bre como refatoração em lote é aplicado na prática. Esse artigo sumariza a
pesquisa elaborada em torno do contexto de uma dissertação de mestrado que
tem foco sobre esses problemas. Para o nosso melhor conhecimento, nossa
pesquisa é o primeiro trabalho publicado que fornece uma fundação conceitual,
suporte de detecção e análises de grande impacto de refatoração em lote sobre a
manutenibilidade do código. Para este fim, nós elaboramos dois estudos exper-
imentais complementares bem como projetada a primeira heurı́stica que almeja
explicitamente suportar a detecção e análise de refatoração em lotes. Primeiro,
nós elaboramos uma revisão da literatura que sintetiza o, caso contrário, es-
palhado, parcial conceitualização de refatoração em lote mencionada em 29
estudos. Nós identificamos sete caracterı́sticas de lotes tais como o escopo
no qual lotes são aplicados em estruturas de código, mais sete tipos de efeito
de lotes sobre a manutenção de sistemas, tais como a remoção de anomalias.
As caracterı́sticas e seus possı́veis efeitos identificados foram sistematizados
em um framework conceitual. A dissertação encerra-se com uma análise de
4.607 lotes detectados com nossa heuristica em 57 projetos de sistemas abertos
e fechados. Entre várias descobertas, nós revelamentos que a maioria dos lotes
ocorre inteiramente dentro de um commit (93%) mas afeta múltiplos métodos
(90%). Surpreendentemente, a maioria dos lotes principalmente acabam in-
troduzindo (51%) ou não removendo (38%) anomalias. Esses resultados con-
tradizem descobertas anteriores of estudos limitados a análise do impacto de
cada transformação isolada. Nossas descobertas também permite-nos reve-
lar formas benéficas ou prejudiciais de lotes que frequentemente induzem a
introdução ou remoção de certas anomalias de código, que (i) não foram docu-
mentadas por estudos anteriores ou no catálogo de refactoring do Fowler, e (ii)
fornece um guia concreto para ambos pesquisadores, designers e profissionais
de ferramentas.
Palavras-chave: refatoração em lote, anomalias de código, revisão da liter-
atura, qualidade interna estrutural

1. Introduction
Code refactoring consists of applying one or more transformations on the code struc-
ture of a software project [Fowler 1999]. Refactoring has been largely employed by de-
velopers, in major companies such as Microsoft [Kim et al. 2014], to remove poor code
structures that represent threats to code maintenance. However, regardless the developer
motivation or intent [Paixão et al. 2020] behind refactoring, the code transformations
applied along the change should enhance or at least preserve the code structure qual-
ity [Kim et al. 2014].

Applying code refactoring in practical settings is quite complex [Kim et al. 2014].
There is a plenty of code transformation types that developers can use and com-
pose to achieve their code structure enhancement goals [Fowler 1999]. Each type de-
fines how a developer should modify the code elements, such as attributes, meth-
ods, and classes [Fowler 1999, Meananeatra 2012] in order to improve the code
structure. Examples of common refactoring types are Extract Method and Move
Method [Fowler 1999]. Recurring poor code structures are usually represented by the
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so-called code smells [Fowler 1999]. Examples of code smell types frequently recog-
nized as harmful by practitioners and cataloged by Fowler include God Classes, Feature
Envies and Long Methods [Yamashita and Moonen 2012].

A single transformation rarely suffices to achieve the full removal of a code
smell [Cedrim et al. 2017]. That is the case for most code smells, for which two or more
code transformations have to be combined to fully remove them [Cedrim et al. 2017].
For instance, shortening a long method often requires many method extractions. Recent
studies [Murphy-Hill et al. 2012, Bibiano 2019] has shown that about 40-60% of code
transformations are applied in batches (or batch refactorings), i.e., sets of two or more
interrelated transformations, rather than in isolation.

Although batches are frequent in practice, the knowledge of batch characteristics
and their impact on code quality is quite fragmented across previous research. Even
worse, the vast majority of the previous studies focus on the detection and impact analysis
of single transformations, ignoring the prevalence of batch refactoring in practice. As
a consequence, empirical knowledge about refactoring is possibly misleading, thereby
misinforming further research as well as practitioners and tool designers.

Based on those limitations, this work presented a literature review and a quanti-
tative study aiming to summarize the knowledge about batches according to the existing
literature and to investigate how developers apply batches in practice. We have found a
total of 29 previous studies published in international conferences and journals. From
the full-text read of these studies, we were able to identify: seven batch characteristics
that regard both structural or other aspects of batches; seven types of batch effect on code
maintenance. Based on the knowledge acquired from our literature review, we followed
the feature model principles [Kang et al. 1990] to build a conceptual map of batch refac-
toring.

Our conceptual map can guide future research towards to reveal how batches are
applied considering different characteristics and effect types. At motivating the potential
of our conceptual map, we created an element-based heuristic to detect batches from char-
acteristics revealed in our conceptual map. This heuristic can be used by future automated
support tools to learn good practices of batch applications. In our quantitative study, we
investigate 4,607 from 57 projects. This study revealed that 72% batches are constituted
of the same transformation type suggested by Fowler’s refactoring book [Fowler 1999].
Besides that, 51% batches tend to introduce code smells, indicating that batches are poorly
exploited by developers for code smell removal.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on main concepts about complete composites. The study design and
results of our literature review are presented in Section 3. Our quantitative study is pre-
sented in Section 4. A summary of the implications of our results and conclusions are
presented in Section 5 and Section 6, respectively.

2. Problem Statement and Limitations of Related Work

The current knowledge of batch refactoring is fragmented – As aforementioned,
batches have been largely applied by developers in real settings [Bibiano et al. 2019,
Murphy-Hill et al. 2012]. Unfortunately, the current knowledge of batch refactoring is
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considerably fragmented across previous studies. Even worse, the vast majority of the
previous studies focus on the detection and impact analysis of single transformations,
ignoring the prevalence of batch refactoring in practice.

As far as the characteristics that constitute a batch are concerned, there are major
limitations in the literature. In fact, past studies assume one or another batch charac-
teristic, such as the variety of transformation types within a batch [Meananeatra 2012].
However, the authors do not systematically evaluate if these characteristics are common
in practice. In other words, previous studies usually mention or assume that batches
are often constituted of a certain characteristic without any empirical validation. More
critically, due to the lack of empirical evidence, previous studies usually contradict one
another with respect to the assumptions underlying batch characteristics. That is the case
of studies that consider batches as composed of transformations that only share a single
transformation type [Murphy-Hill et al. 2012], contrarily to others that assume batches as
composed of varied transformation types [Kim et al. 2014].

Moreover, there is limited knowledge about the effect of batches on code mainte-
nance. Some previous studies assume that batches are beneficial to the code maintenance
by fully removing poor code structures that each transformation in isolation cannot re-
move [Cedrim 2018, Meananeatra 2012]. Conversely, certain studies discuss that batches
can sometimes be detrimental to the code structure quality [Meananeatra 2012], thereby
introducing poor code structures like code smells [Cedrim 2018] and hindering main-
tenance tasks. Most of these studies lack empirical evidence, which ultimately makes
their assumptions debatable. Such lack of empirical evidence can lead to conflicts among
studies as it occurs for batch characteristics. Thus, developers may keep reluctant in
refactoring their projects, because they fear to worsen rather than enhance the code struc-
tures [Kim et al. 2014].

Future research on batch refactoring cannot be properly performed without a
summary of the currently fragmented knowledge about batch refactoring. This summary
could be formalized by a unified conceptual framework of batch characteristics and
types of effect on code maintenance. We hypothesize that a comprehensive conceptual
framework could guide future research by pointing out: (i) which batch characteristics
and types of batch effect have been empirically investigated and could be used as a basis
for future work; and (ii) which characteristics and types of effect are poorly investigated
or have been reported with conflicts among studies.

Research Problem 1: The currently fragmented knowledge of batch refactoring
leads to conflicts among studies and hinders future investigations.

The most frequent manifestations of batch characteristics remain unknown –
According to the literature, each batch characteristic can manifest differently in practice.
For instance, the scope of a batch can vary. Some batches can affect just one method
of a particular class, while others can have effect on a wider scope of the code struc-
ture [Cedrim 2018, Fowler 1999, Meananeatra 2012], i.e., batches can affect multiple
methods, a whole class. Some batches can also be composed of the same transforma-
tion type, e.g., Extract Method only [Murphy-Hill et al. 2012], while others can combine
multiple types like Extract Method and Move Method [Cedrim 2018]. Unfortunately,
none of the previous studies have systematically investigated what are the most frequent

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

168



manifestations of batch characteristics, especially through empirical studies.

A clear understanding of how batch characteristics usually manifest in software
projects can be beneficial to future research in many ways. By characterizing the usual
structure of batches, researchers can propose more accurate heuristics for identifying
batches applied along the version history of existing software projects. Additionally,
researchers could draw new strategies to guide the batch application by taking advantage
of less frequent manifestations to enhance code structures. For instance, if batches rarely
combine multiple code transformation types, we could provide developers with batch
recommendations that combine types to assist them to improve the code structure of their
programs.

Research Problem 2: The limited empirical knowledge about the most frequent
manifestations of batch characteristics makes hard to guide batch application in prac-
tice.

Empirical evidence of the batch effect on code maintenance is quite scarce –
The current knowledge about the types of batch effect on code maintenance is limited.
In fact, the literature [Cedrim et al. 2017, Chávez et al. 2017] has ultimately focused on
assessing the effect of each single code transformation applied along refactoring rather
than batches. Some studies like [Ferreira et al. 2018] have assessed to what extent code
transformations prevent the introduction of software bugs. The previous study results are
mixed and point out that, although single code transformations are prone to reduce bug
introduction, bugs do not occur that far from the transformations in the commit history of
software projects [Ferreira et al. 2018]. Other studies show that not always the single code
transformations are beneficial to code structures [Cedrim et al. 2017, Chávez et al. 2017].
In fact, single transformation tend to either introduce 3% or not fully remove 95% code
smells [Cedrim et al. 2017]. Unfortunately, little is discussed about the batch effect
on code maintenance, especially in terms of code smell introduction, which has been
exploited ad nauseam by previous work on isolated transformations.

Research Problem 3: The limited knowledge about the batch effect on code smells
hinders the recommendation of batches for use in practice.

3. A Literature Review of Batch Refactoring

The first study that composes this work [Bibiano 2019] was a literature review of batch
refactoring. This study is intended to address our first research problem. Due to the
knowledge fragmentation presented by the literature, we decided to perform a literature
review based on well-known guidelines [Kitchenham and Charters 2007]. Our study goal
was three-fold: (i) eliciting the batch characteristics either mentioned or explored by
previous studies. A summary of characteristics could give us the big picture of what does
constitute batches from a researcher perspective; (ii) eliciting the types of batch effect on
code maintenance as assumed by the literature. The summary of assumed types of batch
effect could guide future research with focus on empirical validation; and (iii) identifying
conflicts among previous studies with respect to batch characteristics and types of effect.
Such identification could reveal opportunities for future research aimed to solve conflicts
and leverage the current empirical knowledge of batch refactoring.
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Research Questions. Table 1 presents the research questions (RQs) that we de-
signed for guiding our study. With our three RQs, we expect to support researchers in
guiding their future research. For instance, researchers could prioritize addressing the
conflicting knowledge in their future empirical studies.

Table 1. Research Questions of the Literature Review

ID Description
RQ1 Which batch characteristics have been reported by previous work?
RQ2 Which batch effect on software projects are assumed by previous work?
RQ3 Do previous studies assume conflicting batch characteristics and effects?

Figure 1 presents the ten study steps of our literature review. Step 1: Run a
pilot search. We have performed a pilot search as a preparation to the literature re-
view. We retrieved the top-20 most relevant papers in order to assess the most common
key-terms used by these studies. Step 2: Define a final search string. Based on the
pilot search, we decided our final search string. Steps 3 to 7: Select papers for analy-
sis. We then selected the papers according to guidelines [Kitchenham and Charters 2007].
Step 8: Snowballing. We have followed an existing guideline [Jalali and Wohlin 2012]
to perform snowballing procedures. Step 9: Extract data. We relied on a previous
work [Kitchenham and Charters 2007] to define which data could help us in addressing
our RQs. Step 10: Build conceptual map. We have applied some basic Grounded The-
ory procedures [Stol et al. 2016] on the extracted data

Figure 1. Steps of the Literature Review

Figure 2 presents our conceptual framework of a batch refactoring based on a
total of 29 previous studies published on international conferences and journals. From
the full-text read of these studies, we were able to identify: seven batch characteristics
that regard both structural or other aspects of batches; seven types of batch effect on code
maintenance (detailed in Master’s Dissertation [Bibiano 2019]), which range from inter-
nal to external effects on software projects; and seven conflicts among studies about what
does characterize batches and which effects to expect from the application of batches
in practice. Based on the knowledge acquired from our literature review, we followed
the feature model principles to build a conceptual framework of batch refactoring. We
expect that this map, combined with our discussions on some literature conflicts, can
better guide future research aimed to empirically evaluate both batch characteristics
and types of effect. Thus, the first contribution of this dissertation can be stated as follows.
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Figure 2. Conceptual Framework of Batch Refactoring

Contribution 1: A conceptual framework of batch refactoring that encompasses
batch characteristics and types of effect reported by the literature so far. Our concep-
tual framework can guide future research towards leveraging the current knowledge
on what does characterize a batch and how it affects code maintenance.

On our RQ1, we classified the characteristics in two groups: Application and
Structure. The Application group is composed of three batch characteristics: developer,
time and commit. These characteristics regard the way who and how to apply batches.
Thus, these characteristics say something about the developer practices along the batch
application. The Structure Group is composed of four batch characteristics: scope, va-
riety, cardinality, and order. These characteristics regard internal aspects of the batch
composition. In order words, these characteristics reflect the internal batch structure.

On our RQ2, we have positive and negative types of batch effect. Three positive
types of effect were either mentioned or exploited by previous studies: software design
improvement, internal quality improvement, and external quality improvement. These
types of effect reflect an enhancement of design, internal and external quality aspects
of software projects. With design level, we mean that batches can have an effect on
the architecture or detailed design. With internal aspects, we mean any characteristic of
the internal code structure of a software project, such as coupling, cohesion and code
complexity. With external aspects, we mean those characteristics of a project that are
manifested externally to the code structure, usually by means of requirements that system
users can interact with. Four negative types of batch effect were identified in the literature:
design pattern removal, internal quality degradation, poor code structure introduction,
and maintenance cost increase. These types reflect different aspects of decay in code
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maintainability.

On our third RQ, we have found some cases of conflict among studies with re-
spect to the characteristics and effect types that constitute a batch. Conflict 1: Scope
of a batch: one code element or several code elements? The current knowledge
about what code elements are affected by a batch refactoring is ultimately conflicting.
Some studies consider that the code transformations constituting a batch should be con-
strained to the same code element, e.g., a method or a class [Kuhlemann et al. 2010,
Meananeatra 2012]. Conversely, other studies assume that a batch refactoring can af-
fect multiple classes [Kim et al. 2014, Ouni et al. 2013a, Cedrim 2018]. Each study may
have adopted a different manifestation of the scope characteristic because it could fa-
cilitate their study goals. However, these studies did not explain why they did not
use other manifestations. There is a need for a proper understanding of what are
boundaries that determine the code elements affected by a batch refactoring. Oth-
erwise, it is hard to elaborate or choose a heuristic to identify existing batches in a
software project. Conflict 2: Are batches more likely to improve internal code
structures rather than degrade these structures? We have found studies, such
as [Kim et al. 2014, Mkaouer et al. 2014, Ouni et al. 2013b], that point out batches as
means for improving the internal quality of software projects. Conversely, a particular
study [Ó Cinnéide et al. 2012] discussed that undisciplined batch application can lead to
the degradation of code structures. Similarly to Conflict 1, we expect that future work can
address this particular issue in order to draw more assertive conclusions about the batch
effect on the internal quality of software projects. Conflict 3: What is the actual batch
effect at the architectural level? Some studies [Kim et al. 2016, Qayum et al. 2010] as-
sume that batches likely affect negatively the current architecture of software projects.
These studies suggest that batches can increase the coupling between modules of a soft-
ware architecture. On the other hand, a particular study [Lin et al. 2016] proposes that
batches can be applied to improve the software architecture by improving the cohesion
and the coupling of the software’s components. Thus, there is some lack of consensus on
how batches affect the architecture of software projects.

After we defined our conceptual framework, we defined and implemented a
heuristic to detect batches based on observations of our literature review. Our literature
review revealed that previous studies often defined a batch refactoring as a set of interre-
lated code transformations applied by the same developer and on a single code element.
Based on that, our heuristic detects every batch that satisfies all the following constraints:
(i) it consists of a set of two or more transformations, (ii) the transformations are applied
on one code element - either a class or a method, and (iii) those transformations are
applied by one developer. Once the scope of each detected batch is constrained to a code
element, our heuristic is called element-based. However, even in situations were a batch
refactoring may end up affecting two or more elements, the outcomes of our heuristic can
be composed to study these batches with wider scope. Therefore, we have our second
contribution:

Contribution 2: A element-based heuristic to detect batch refactorings. Our heuris-
tic can guide future research towards collecting and investigating batches applied in
practice as well as practitioners that want to reason about their previously performed
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batch refactorings.

The use of this heuristic has enable us to study the relationship of batch refac-
toring and internal code attributes and code smells (Section 5). This heuristic was key
to support followup research (in collaboration with other colleagues) to identify the re-
lationship between batches and developer’s intents [Paixão et al. 2020], refactoring evo-
lution [Paixão et al. 2020], good or bad refactoring practices [Sousa et al. 2020], refac-
toring customization and non-functional concerns (papers under submission for these two
latter studies). Our literature review and the empirical study in Section 5 along the MSc
research served to pinpoint advantages and limitations of our proposed heuristic for batch
detection. These limitations also have been addressed in a join work with other colleagues
in our research group [Sousa et al. 2020].

4. A Large Study of Batch Characteristics and Structural Effect

Figure 3. Study Steps

Figure 3 presents the steps of our second study [Bibiano 2019] was a large-scale
empirical study of batch refactoring. This study has two parts aimed to address Research
Problems 2 and 3 respectively. Both parts share a common study design, which relied on
the collection and analysis of data from 57 open and closed projects. These projects were
either downloaded from public GitHub repositories or provided by Brazilian companies.
We created a batch detection heuristic based in our literature review (Section 3) in order
to collect a set of 4,607 batches applied on these projects. We were able to address our
last two research problems as explained below.

We first focused on understanding how the batch characteristics elicited from our
literature review manifest more frequently in real software projects. For this purpose, we
cherry-picked four batch characteristics. For example, we selected the number of code
transformations within a batch. We analyzed the frequency of the possible manifestations
of each characteristic. Each characteristic had two possible manifestations. For example,
the characteristic number of transformations had two manifestations in our study: (i)
batches with the minimum cardinality. i.e, two transformations only, and (ii) batches with
three or more transformations.

We derived categories of batches based on the manifestations of each batch
characteristic. In total, we had 16 possible categories for batches based on the possible
combinations of the two manifestations of the four characteristics. As a result, we
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have found that most batches follow a general trend: 93% occur in one commit, 72%
are constituted of the same transformation type and 22% range from four to ten code
transformations. Table 2 presents the batches identified according to their single or hybrid
types. They are often composed of three or more code transformations (28%) and affect
much more than only one method (9%) on the same class. Surprisingly, 60% of batches
applied on code elements affected by code smells were constituted by transformations
types of either extraction or motion natures (e.g., Extract Method and Move Method).
The second contribution of this dissertation can be stated as follows.

Contribution 3: An empirical study on the frequent manifestations of batch charac-
teristics in real software projects. The fact that most batches (72%) are constituted of
the same transformation type suggests that batches recommended by Fowler’s refac-
toring book [Fowler 1999] to fully remove code smells have been underutilized in
practice. Additionally, the high rate of batches (60%) composed by extractions and
movements reinforces that developers require guidance to apply batches in practice.

This study enable to elicit a comprehensive set of batch characteristics, which
were derived through our literature review (Section 3). In previous studies, each
batch characteristic was arbitrarily chosen (and defined) for investigation. The em-
pirical understanding of frequent manifestations of each batch characteristic is a use-
ful instrument for researchers. This understanding can help them in refining heuris-
tics for computing batches applied by developers in practical settings, as we recently
did in a study [Sousa et al. 2020]. For instance, we observed that it is common that
code transformations in batches move code elements to one or more classes. Thus,
a heuristic can compute a batch through the code transformations applied on multiple
classes [Sousa et al. 2020].

Finally, we assessed the effect of batches on code maintainability with respect to
the introduction and removal of code smells. We have used automated tools for iden-
tifying 19 different types of code smells, such as Large Class and Long Method. We
then analyzed the structural effect of applying the candidate batch refactorings on the
programs. We have computed the total number of code smells before and after the appli-
cation of each batch. We only consider the code smells affecting code elements within
the scope of the transformations in batches. In other words, we do not consider the other
code elements not affected by the refactoring. This procedure is important to make sure
we increase the likelihood of discarding changes that have no relationship with batches.

Our results suggest that most batch refactorings either introduce (51%) or do not
suffice to remove (38%) code smells. This observation is quite different to that obtained
in previous studies of single code transformations, which found that the vast majority of
refactorings our neutral (e.g., see [Cedrim et al. 2017]). More importantly, this finding
suggests that, even with the potential to enhance code structures, batches are still poorly
applied by developers. Thus, one should consider to propose mechanisms for recommend-
ing useful batches that are able to fully remove code smells while assisting the developer
to achieve its other underlying (either structural or non-structural, explicit or implicit)
goals. For instance, a batch composed by Pull Up Methods to induce the removal of a
Message Chain code smell. Thus, our third contribution can be stated as follows.
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Table 2. Frequency of Batches According to their Single or Hybrid Nature

Group ID Nature ID(s) Batches (%)
G1 Extraction 1,449 (31.4%)
G2 Motion 1,142 (25%)
G3 Rename 580 (12.6%)
G4 Pull Up 352 (7.6%)
G5 Inline, Extraction 233 (5%)
G6 Inline 221 (5%)
G7 Extraction, Motion 153 (3.3%)
G8 Extraction, Rename 105 (2.3%)
G9 Pull Up, Motion 84 (2%)
G10 Motion, Rename 59 (1.3%)
G11 Push Down 58 (1.3%)
G12 Inline, Motion 52 (1.1%)
G13 Inline, Extraction, Motion, Rename 28 (0.6%)
G14 Inline, Rename 25 (0.5%)
G15 Pull Up, Extraction 18 (0.4%)
G16 Push Down, Extraction 11 (0.2%)
G17 Push Down, Pull Up, Inline, Extraction, Motion, Rename 11 (0.2%)
G18 Pull Up, Inline 8 (0.2%)
G19 Pull Up, Rename 7 (0%)
G20 Push Down, Pull Up 6 (0%)
G21 Push Down, Inline 3 (0%)
G22 Push Down, Rename 2 (0%)

Total 4,607 (100%)

Contribution 4: An empirical study of the batch effect on code smells. Similarly to
single code transformations, batches are poorly exploited by developers and tend to
introduce (51%) rather than remove code smells. Developers need guidance to apply
batches in practice, and our study provided some hints of recommendable batches.

Characterizing the actual effect of batches on smell introduction and removal
is essential to guide developers in enhancing code structures via code refactoring. In
fact, code refactoring has been largely employed by the industry for removing poor
code structures [Kim et al. 2014, Murphy-Hill et al. 2012]. In this context, a previous
study [Cedrim 2018] evaluated empirically the batch effect on code smell introduction
and removal. Unfortunately, that study did not evaluate systematically the batch effect
and they had some key limitations that hindered a comprehensive view of such effect on
code maintenance, which implies little support to enhance current refactoring practices.

Based on a large data set of 57 software projects, plus a set of batch characteristics
extracted from our literature review (Section 3), we impact the current knowledge of
refactoring and revealed additional aspects of the batch effect on code smells. Similarly
to the previous work [Cedrim 2018], we found that most batches end up either introducing
(5%) or not fully removing (89%) code smells. Perhaps due to the extended data set, our
study pointed out a 51% higher rate of batches introducing code smells.

However, by scrutinizing the nature of code transformations that constitute these
batches, we observed that code smells are often introduced by batches composed of Ex-
tract Methods and Move Methods. More critically, certain batches recommended by pre-
vious work [Cedrim et al. 2017, Fowler 1999] more likely introduce rather than remove
code smells. For these cases, our results revealed certain code transformations that can
complement existing batches to fully remove code smells. In this vein, our results re-
vealed some patterns of batch refactorings that can be recommended to developers, which
were not yet reported or exploited by the literature. Many of these patterns are not ad-
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dressed either in Fowler’s refactoring recommendations for removing certain code smell
stypes.

5. Insights to Enhance Current Refactoring Support
The empirical studies of this work [Bibiano 2019] have also enabled us to reveal limi-
tations and some opportunities for refining current tools and methods to support batch
refactoring. We discuss these improvements as follows.

Extending Refactoring Tools to Recommend Batches for Code Smell Re-
moval. Previous studies (e.g., [Bavota et al. 2011, Tsantalis and Chatzigeorgiou 2011]
and even more recent ones) introduced tooling support, heuristics or recommendation
systems for guiding the application of isolated code transformations along code refac-
toring aiming at supporting code smell removal. Unfortunately, these studies provide
little or no support to the batch application. In fact, most of the current tools do not
guide developers: (i) to reason about the interrelations of code transformations, and (ii)
to understand how isolated transformations can be composed towards a code smell re-
moval. Once batches are frequently applied by developers [Cedrim 2018, Kim et al. 2014,
Murphy-Hill et al. 2012], the automated guidance of batch refactoring is desired.

Improving the Refactoring Recommendation for Long Method Removal.
An existing robust tool, called JDeodorant [Tsantalis and Chatzigeorgiou 2011], recom-
mends the Extract Method application aiming to remove a Long Method. However, our
results show that mere application of a single Extract Method quite often leads to an
extracted method that is also a Long Method or clearly becomes a Feature Envy. The
original method, which was the target of the Extract Method, was too long and, even ex-
tracting part of it, the refactoring was not able to fully solve the smell. In other words, the
smell is being propagated to the other method produced along the refactoring. Moreover,
the applied refactoring might have highlighted a more severe problem, i.e., the presence
of envy code. Robust tools, such as JDeodorant, could be extended to progressively (or
in one go) recommend batches with the proper amount of Extract Methods (and Move
Methods) to fully resolve the entire smelly structure affecting the host class.

Improving the Refactoring Recommendation for Feature Envy Removal. The
existing catalogs recommend batches composed by Extract Methods and Move Methods
to remove a Feature Envy [Fowler 1999]. In our results, surprisingly, we have found that
batches composed by these transformations have also been introducing Feature Envies.
This is because developers can be applying more Extract Methods than Move Methods
or they are moving other methods that are not envious. Thus, the extracted methods are
envious code and they are not moved to another class. In that context, an automated
support tool can recommend the batch application to remove this code smell, but this tool
also can alert the developer what are the proper methods to be moved.

Batches are Relevant for the Software Architecture Improvement. In our re-
sults, we have found that more than 42% batches are composed by transformations that
move code elements across classes. These classes may play a key role in the architecture
of a system. These observations indicate that batches may affect (positively or negatively)
the architecture of a software. Thus, developers should be provided with tools that rec-
ommend batches for software architecture improvement.

Lin et al. [Lin et al. 2016] proposed the Refactoring Navigator, a tool-supported

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

176



approach that allows the developer to indicate the new desired architectural design. The
system needs to be re-structured to achieve the new desired architectural design. The goal
of the Refactoring Navigator approach is to support this transition. To do so, the tool
calculates one or more batches that must be applied to achieve the intended architecture
design, while also improving the cohesion and coupling attributes of the program. How-
ever, Refactoring Navigator departs from the assumption that the developer often knows
the intended design. An analysis of several examples of batches in project repositories in
our study, however, revealed that developers more often do not have a fixed, target design.
Our patterns of smell-removal batches can clearly help in those cases.

6. Conclusion
In this paper, we have investigated a particular phenomenon that has been poorly explored
by previous studies in spite of its frequency in practice: batch refactoring. Batch refactor-
ing consists of applying sets of interrelated code transformations on the code structures
of software project [Cedrim 2018]. Each set of interrelated code transformations is called
a batch [Cedrim 2018].

Unfortunately, the current knowledge about batch refactoring is quite scarce,
which makes hard to support developers in their daily refactoring practices. There-
fore, little is known about the characteristics that constitute a batch in practice. More-
over, there is limited empirical evidence about the effect of batches on code mainte-
nance [Cedrim 2018]. As an implication, developers may still feel reluctant in apply-
ing batches on their projects [Kim et al. 2014], due to the fear of worsening rather than
enhancing code structures.

Aimed to address the literature gaps mentioned above, this work compiles two
complementary studies. The first study relies on previous work and summarizes the
knowledge produced so far about (i) characteristics that constitute batch refactoring and
(ii) expected types of batch effect on code maintenance. Thus, we were able to evaluate
the possible conflicts on the assumptions made by researchers on which batch character-
istics and batches affect types. The second study relies on a large set of software projects
and hundreds of heuristic-computed batches. We analyzed the frequency of certain char-
acteristics in such batches. We also analyzed a particular type of batch effect: the intro-
duction and removal of code smells. We expect that some of the outcomes of this paper
can guide developers in their daily work while revealing opportunities for future research
work on the topic.
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