
Simulation of Systems-of-Systems Dynamic Architectures
Wallace Manzano1, Valdemar Vicente Graciano Neto1,2, Elisa Yumi Nakagawa1

1 Institute of Mathematics and Computer Science
University of São Paulo (USP) – São Carlos, Brazil

2Institute of Informatics
Federal University of Goiás (UFG) – Goiânia, Brazil

wallace.manzano@usp.br, valdemarneto@ufg.br, elisa@icmc.usp.br

Abstract. Systems-of-Systems (SoS) combine heterogeneous, independent sys-
tems to offer complex functionalities for highly dynamic smart applications.
Due to their critical nature, SoS should be reliable and work without interrup-
tion since a failure could cause serious losses. SoS architectural design can
facilitate the prediction of the impact of failures due to SoS behavior. However,
existing approaches do not support such evaluation. The main contribution of
this paper is to present Dynamic-SoS, an approach to predict, at design time,
the SoS architectural behavior at runtime to evaluate whether the SoS can sus-
tain their operation. Results of our multiple case studies reveal Dynamic-SoS
is a promising approach that could contribute to the quality of SoS by reliably
enabling prior assessment of their dynamic architecture.

1. Introduction and Background
Context. Software-intensive systems have been increasingly required to interoperate
among themselves, communicating, exchanging, and using information exchanged1.
Consequently, a distinct class of systems known as Systems-of-Systems (SoS)2 has arisen.
An SoS results from operationally and managerially independent software-intensive sys-
tems (called constituents) working together to fulfill complex missions (Maier 1998). SoS
are often linked to critical domains, such as smart traffic control systems, crisis response
management, and national defense systems.

Due to their inherent criticality, it is imperative that SoS are reliable, that is, their
operation must be correct and happen according to what is expected, without causing
harm or threatening people who use their services. To guarantee a reliable operation
for SoS, it is important to establish strategies to maintain an SoS operation in progress,
despite a high degree of dynamism, with new constituents joining and leaving the SoS
at runtime (Heegaard and Schoitsch 2015). Besides, it is essential that SoS operation is
not interrupted and that problems in one or more of their constituents are automatically
solved by automatic and dynamic reconfiguration of the SoS architecture at runtime to
substitute them and guarantee the feasibility of the SoS continuous operation.

Simulation techniques have been successfully used in software engineering
(de França and Travassos 2016) to support the visualization of the systems’ dynamic

1 http://www.himss.org/library/interoperability-standards/
what-is-interoperability

2 For sake of simplicity, herein the acronym SoS will be used interchangeably to express both singular
and plural.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

245

behaviors. Simulations can anticipate, at design time, failures and behaviors that could
potentially occur at runtime. Simulation of software architectures can be achieved
by using a simulation formalism such as Dynamic Structure Discrete Event System
Specification (DS-DEVS) to modeling behavior of systems by a table of inputs, outputs,
and state transitions, as well as the coupling of these systems, as adopted by Bogado et
al. (2017).

Problem. Despite the suitability of simulation formalism to predict behaviors with
dynamic reconfiguration support, a complex task arises from guaranteeing precision
in simulating SoS software architectures, i.e., simulating the behavior of multiple
constituent systems and their relationship to each other, and to the environment at
runtime while still considering the dynamic reconfiguration of the SoS constituent
systems. Existing simulation formalism lacks on precisely representing SoS software
architectures, including the representation of different types of systems, environment
representation, and dynamic reconfiguration. Despite the formalism supporting the
dynamic architecture representation, the mechanism to implement it is arbitrarily chosen
by the user. On the other hand, the pure adoption of architectural description languages
(ADL) also suffers from limitations on the precise description of dynamism of an
architecture composed by multiple systems and the impact of it on the provided behavior,
as recognized by Guessi et al. (2015). The main research question addressed in this work
is: How to provide a means to assure that the SoS operation is trustworthy, i.e., will it be
maintained on-the-fly, despite the inherent SoS dynamic architecture?

Solution. To address this question, this paper presents Dynamic-SoS, an approach
established by the undergraduate student for simulating SoS software architectures
with dynamic reconfiguration support. Our approach uses a SosADL to DEVS model
transformation (SosADL2DEVS) that automatically generates simulation models from
SoS software architecture specifications. The main contributions of Dynamic-SoS were:
(i) the proposition of a set of canonical dynamic reconfiguration operators for SoS
software architectures; (ii) the extension of an existing model transformation by adding a
dynamic reconfiguration controller (DRC) structure, which enables simulation models in
DEVS to show and manage dynamic reconfigurations at runtime; (iii) the engineering of
DRC itself, since such an idea could be used for other simulation formalism, as well; and
(iv) the characterization of the process to assess SoS behaviors considering the associated
dynamic architecture. We evaluated our approach through multiple case studies in three
distinct domains: Flood Monitoring SoS, Smart Building SoS, and Space SoS. From a
triangulation of the results obtained from these case studies, we concluded our approach
successfully supports SoS simulation while accounting for dynamic architectures. As
a result, our work may potentially be used to evaluate SoS dynamic architectures,
enhancing SoS quality by enabling the visualization of possible problems that the SoS
may exhibit besides predicting/anticipating SoS architectural behavior at runtime, thus
evaluating whether the SoS can sustain their operation.

This paper is organized as follows: Section 2 presents Dynamic-SoS, Section 3
presents our evaluation and results, Section 4 summarizes the contributions of this work,
and Section 5 contains final remarks and directions for future work.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

246

2. Dynamic-SoS Approach
Dynamic-SoS is a model-based approach to automatically create SoS simulations with
dynamic reconfiguration (Manzano et al. 2019). To support the dynamic reconfiguration,
we established a set of dynamic reconfiguration operations based on the canonical set
of changes initially proposed by Cavalcante et al. (2015). Cavalcante et al. observed
single systems may have their architectures modified at runtime due to the creation of
a new component, removal of a component, attachment of a component, and detach-
ment of a component. For SoS software architectures, we reviewed such operators and
defined four canonical operators to achieve dynamics in such architectures. In our ap-
proach, dynamic reconfiguration in an SoS software architecture is based on constituent
addition, constituent removal, constituent replacement, and architecture reorganization.
Our approach uses a SosADL to DEVS model transformation (SosADL2DEVS) that au-
tomatically generates simulation models from SoS software architecture specifications,
based on an approach called ASAS (Approach to Support Simulation of SmArt Systems)
(Graciano Neto et al. 2018a). However, ASAS does not support the simulation of dy-
namic architectures. Dynamic-SoS was established by adding the generation and mon-
itoring of dynamic architectures for that SosADL2DEVS transformation produced by
Graciano Neto et al. (2018a), as depicted in Figure 1. Moreover, we established a set
of activities to systematize the use of Dynamic-SoS approach, as follows.

Fig. 1. Dynamic-SoS approach (Manzano et al. 2019; Graciano Neto et al. 2018a).

Activity 1 (A1). Definition of the SoS architecture by means of a coalition, expressing
the policies and defining bindings among the constituents;
Activity 2 (A2). Generation of the initial architectural arrangement for the simulation,
using a method defined by Guessi et al. (2016);
Activity 3 (A3). Execution of the model transformation on the concrete model (in
SosADL) to automatically produce a DEVS simulation code with support for the dy-
namic reconfiguration of an SoS architecture;
Activity 4 (A4). Deployment, i.e., the process of managing files of the atomic and cou-
pled models obtained as an outcome of the transformation, deploying them in the specific
packages/directories of the project to be simulated in MS4ME3 (the simulation environ-
ment);
Activity 5 (A5). Simulation execution that consists of launching the simulation; and

3 http://www.ms4systems.com/pages/ms4me.php

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

247

Activity 6 (A6). Monitoring architectural reconfiguration using the dynamic reconfigura-
tion operators, comprising the observation of the SoS dynamics at runtime, and registering
the execution traces in log files for posterior analysis.

2.1. Dynamic reconfiguration controller
Dynamic-SoS is a programmed exogenous reconfiguration approach, which means that
an entity termed as Dynamic Reconfiguration Controller (DRC) is responsible for man-
aging every architectural change that occurs in the whole structure. DRC is an artificial
architectural element that owns control over all elements of the software architecture and
manages the architectural changes. DRC is added to the simulation to support the user
in conducting architectural changes at runtime through the dynamic reconfiguration op-
erators. Figure 2 presents the state machine of DRC. From the DEVS simulation model
perspective, DRC is an atomic model, whose function is to execute the four dynamic
reconfiguration operators while maintaining properties of the initial architecture configu-
ration.

Fig. 2. State machine implemented in DEVS to materialize the four canonical re-
configuration operators performed by the Dynamic Reconfiguration Con-
troller (Manzano et al. 2019).

To execute a reconfiguration operator, it is necessary to send a signal to the DRC
with the operator to be performed and, if the operator is not a reorganization, the con-
stituent in which the operator will be executed (in the addition the type of the constituent
to be added) is also required.

2.2. Adding Support of Dynamic Reconfiguration through a Model Transformation
All SosADL elements are mapped to DEVS to create a functional simulation. Transfor-
mation rules automatically create the DRC from the concrete SosADL architecture and
add it to the simulation model. This controller holds and makes available to the user the
four dynamic reconfiguration operators.

The model transformation generates three main elements related to the dynamic
architecture of the target simulation model, which are:

• DRC: As presented in Section 2.1, it consists of an atomic model that manages all
changes in the simulation, as shown in Figure 2. For that, it manages connections

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

248

and mediators among constituents, so that the new arrangements remain consistent
with the original architecture;

• Identification flags: In DEVS, there is no distinction between constituent systems
and mediators, all of which are transformed into atomic models. However, this
differentiation is necessary to maintain the functional architecture after running a
dynamic reconfiguration operator. To artificially bring that to DEVS, we added
two identification flags to the atomic models: one to check if the system is a
mediator or not (a binary variable), and another that is the constituent type name,
such as sensor, transmitter, or gateway; and

• Connections of all constituents with the DRC in the coupled model: This is
necessary to enable the controller to communicate with all constituents and to
remove some of them, if necessary.

3. Evaluation
Dynamic-SoS was evaluated through nine case studies, three of which were designed
specifically for the evaluation of the approach, and the other six designed for the evalu-
ation of other projects. Dynamic-SoS was able to simulate 395 constituents in a single
simulation and successfully ran 113 hours of simulation (Table 1). Due to the large num-
ber of constituents and the long duration of the simulations, auxiliary mechanisms for
evaluation were implemented, such as a log for human experts, and automatic procedures
for measuring and delivering results regarding the delivery percentage of the behaviors.

Three case studies designed for Dynamic-SoS evaluation were conducted in three
distinct domains (Manzano et al. 2019):

1. Flood Monitoring SoS (FMSoS): a SoS with no central authority and being part
of a smart city responsible for monitoring rivers that cross urban areas and noti-
fying the population about potential floods that can quickly occur, causing huge
damage and risk for the population. FMSoS is deployed along the river and its
sensors are spread on the riverbank’s edges and data are transmitted to a gateway.
Additionally, drones fly over the river and return to their bases to recharge and
communicate flood threat alerts. In parallel, people walking close to the river can
also contribute by communicating water level increases through a crowdsensing
mechanism supported by mobile apps;

2. Space SoS: a real system called Environmental Data Collection System (SBCDA,
in Portuguese). Space SoS is operated and managed by the Brazilian National
Institute for Space Research (INPE, in Portuguese), which provided us real data
and know-how to precisely model the entire system. Space SoS is responsible to
perform two concurrent missions (environmental data collection and image cap-
ture), and is composed of satellites, ground station, command and control center,
and data collection platforms, which each of then can be managed by different
institutions; and

3. Smart Building: a SoS that provides important services to their residents and vis-
itors, such as energy savings, and light control by sensors, and fire alarms in case
they happen. Dynamic-SoS approach was also evaluated using a Smart Building
SoS (SBS), which is composed of three other SoS: fire system (composed of sen-
sors, alarms, and sprinklers), lighting system (composed of sensors and lamps),
and room (composed of sensors, air conditioners, and alarms). Moreover, SBS

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

249

has a Smart Building Control Unity (SBCU), which is responsible for managing
constituent systems of the building.+

In this work, the matter of interest is the simulation of SoS dynamic architec-
tures. We intended to observe whether Dynamic-SoS was well-succeeded for both: (i)
automatically providing simulation models that support dynamic reconfigurations; and
(ii) supporting the analysis of the impact of such reconfigurations on the SoS architec-
ture, in particular, in regards to the sustainability of SoS emergent behaviors. In this way,
the research question addressed in these case studies was Are the architectural changes
successful, giving rise to new SoS coalitions in a valid operational state?

We executed three different evaluations, involving FMSoS, Smart Building, and
Space SoS. For all of them, we applied the same set of architectural changes in the same
order, and observed their impact on the data transmission rates (intimately aligned with
the emergent behaviors provided by the SoS) expressed by the percentage of data that was
successfully received in a gateway or that passed by a specific constituent in regards to
the total number of data that was provided as stimuli to feed each simulation.

Figure 3 shows data collected from simulations. This data presents the percentage
of collected data during the case studies (y axis) and performed operators (color, as speci-
fied in the legend). This data supports us to analyze the SoS availability and performance
to fulfill its missions during its execution and predict how changes in the architecture of
SoS will impact its performance, allowing to anticipate eventual problems.

Fig. 3. Chart showing the rate of receipt of data throughout the case studies.

Additionally, we can analyze the impact of executing operators in the architecture.
Figure 4 shows the impact of the addition operator on receiving data (y axis) and shows
in which constituent type was performed the operator (point color). This chart allows us
to analyze how the increase in the number of constituents affects data transmission. In
all case studies, the addition of sensors/collectors decreased the data received, while the
addition of constituents that receive these data increases the rate of data collection. This
helps us to draw a trade-off on the acquisition of new constituents, making it possible,

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

250

for instance, to conclude that adding a second gateway in the FMSoS increases the data
reception rate by 20%, which is the same gain that happens when adding a second satellite
to the Space SoS. Then, after analyzing and triangulating results obtained from three

● ● ● ●
●
●
●

●
●
● ●

●

●
● ●

●

●
● ● ● ● ● ●

●
●

●

●

●

●
● ●

●

●

● ● ● ●
● ●

●
● ● ● ● ●

●

●
●
●
● ●

●
● ●

● ●
●
● ● ●

−20

0

20

0 20 40 60
Amount of Architectural Changes

Im
p
a
c
t
o
n
 D

a
ta

 R
e
c
e
ip

t

Constituent
●

●

●

●

●

crowd

Drone

Drone Basis

gateway

sensor

FMSoS

● ● ●
●
● ●

●

●

●

● ● ●
●
●

●
●
● ● ●

●

● ●
●
●
●

●

●
●
●

● ● ●
●

● ●
● ●

● ● ●

●

●

●
● ●

● ●

●

●
●

●

●

●
●
●

● ● ● ●
●

−20

0

20

0 20 40 60
Amount of Architectural Changes

Im
p
a
c
t
o
n
 D

a
ta

 R
e
c
e
ip

t

Constituent
●

●

●

●

●

●

●

●

●

●

AirConditioner

BuildingControlUnity

FireSprinkler

FireSystemControlUnity

HeatDetector

Lamp

LightingSystemControlUnity

LightSensor

RoomControlUnity

Thermometer

Smart Building

●

● ●
● ●

●

● ●
● ●

●
●
●

●

●
● ● ●

●
● ● ● ● ● ●

● ● ●
● ● ●

●
●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ● ● ● ●
●
●

−20

0

20

0 20 40 60
Amount of Architectural Changes

Im
p
a
c
t
o
n
 D

a
ta

 R
e
c
e
ip

t

Constituent
●

●

●

●

●

PCDAgro

PCDHidro

PCDMet

PCDQagua

Satellite

Space SoS

Fig. 4. Chart presenting the impact of the addition of a constituent in the simula-
tion.

different independent studies and monitoring the logs file of the architectural state of
the simulation, we can answer the raised research question for the case studies: Are the
architectural changes successful, giving rise to new SoS coalitions in a valid operational
state? The answer is Yes. In 100% of the cases, Dynamic-SoS was successful to support
dynamic reconfigurations in SoS software architectures, leading the architecture to valid
operational states in all obtained coalitions.

Besides the three case studies designed for the Dynamic-SoS evaluation, our ap-
proach supported the execution of other six cases, totaling nine case studies. Table 1
shows these studies, their domain, number of lines of code (LOC) of the models specified
in SosADL, amount generated in DEVS by model transformation, maximum number of
constituent reached in the case study, and total simulation time. With these results, we
were able to evaluate that Dynamic-SoS was successful in generating more than 1 mil-
lion LOC, and successfully generating simulations that ran more than 110 hours. Hence,
we can answer our first research question: How to provide a means to assure that the
SoS operation is trustworthy, i.e., will it be maintained on-the-fly, despite the inherent
SoS dynamic architecture? The answer is that Dynamic-SoS can be used to maintain the
simulation on-the-fly by using a reconfiguration controller to properly manage the recon-
figurations in the architecture.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

251

Tab. 1. Lines of code generated in each case study.

Study Domain SosADL
(LOC)

DEVS
(LOC)

Maximum
Number of
Constituents

Total simu-
lation time
(hours)

1 (Graciano Neto et al. 2018a) FMSoS 701 8,563 70 6.33
2 (Manzano et al. 2019) FMSoS 701 8,563 52 5.33
3 (Graciano Neto et al. 2017) FMSoS 1,154 56,185 112 6.2
4 (Graciano Neto et al. 2018b) FMSoS 660 3,332 89 2.6
5 (Manzano et al. 2019) Smart Building 6,724 219,930 395 9.66
6 (Graciano Neto et al. 2018c) Space SoS 640 11,195 4 0.72
7 (Graciano Neto et al. 2019) Space SoS 2,399 128,884 311 27
8 (Manzano et al. 2019) Space SoS 2,677 378,557 155 21.5
9 (Graciano Neto et al. 2019) Space SoS 4,014 497,040 258 34

Total 19,670 1,312,249 1,446 113.34

4. Contributions
Publications. This work resulted in four publications, one in a journal, two in sym-
posiums, and one awarded as one of the three best works in an undergraduate student
scientific works contest:

1. Manzano, W., Graciano Neto, V. V., and Nakagawa, E. Y. (2019).Dynamic-SoS:
An Approach for the Simulation of Systems-of-Systems Dynamic Architectures.
The Computer Journal, 63(5):709–731

2. Manzano, W., Graciano Neto, V. V., and Nakagawa, E. Y. (2018). Verificação
Estatı́stica de Modelos de Arquiteturas de Software de Sistemas-de-Sistemas. In
26o Simpósio Internacional de Iniciação Cientı́fica da USP (SIICUSP)

3. Manzano, W., Graciano Neto, V. V., and Nakagawa, E. Y. (2017). Simulação de
Arquiteturas de Software de Sistemas-de-Sistemas com Suporte à Reconfiguração
Dinâmica. In 25o Simpósio Internacional de Iniciação Cientı́fica da USP (SI-
ICUSP)

4. W. Manzano, V. V. Graciano Neto, and E. Y. Nakagawa (2019). Simulating
Systems-of-Systems Dynamic Architectures, 38o CTIC@CSBC, Belém, p. 1-10
(Also published in the Revista Eletrônica de Iniciação Cientı́fica)

In addition to these four self-authored important publications, other several
publications were achieved using results provided by the approach developed by
this student and having him as a co-author, including two journal publications
(Graciano Neto et al. 2017; Graciano Neto et al. 2020), two full papers in premier in-
ternational conferences (Graciano Neto et al. 2018c; Graciano Neto et al. 2018a), and
also other important four conferences and workshop papers4.

Impact. With regard to this work, important contributions were brought:

1. Characterization of SoS dynamic architectures operators. Providing dynamic
architectures inherently depends on designing each possible change that can be
performed on these architectures. Those changes should be well-defined and
the final architecture should always deliver a valid operational state. Dynamic
reconfiguration operators were previously established for single systems software
architectures. However, when considering multiple interoperable systems present

4 The list can be checked herein: https://dblp.org/pers/hd/m/Manzano:Wallace

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

252

in an SoS, there was a gap to be bridged. Dynamic-SoS builds a remarkable
contribution on previous advances by providing a robust and canonical set of
dynamic changes that can be adopted to represent any change that a SoS software
architecture can suffer. We state this as a contribution that can be replicated in
other contexts that require SoS dynamic architectures;

2. Generation of dynamic models from static models. Dynamic-SoS also provides
a means to automatically derive SoS simulation models from static specification
of SoS software architectures with a single initial coalition; and

3. A process to include dynamics in SoS software architecture models. By us-
ing a model transformation approach, we established a process that encompasses
activities necessary to observe the dynamics of SoS via simulations, passing by
the SoS software architecture specification step until reaching the assessment of
different architectural configurations.

In addition, we extend Dynamic-SoS through a plugin to communicate with a sta-
tistical model checker to automatically perform a statistical verification of functional and
architectural properties to automatically provide a level of trust in which the architecture
is able to meet the properties. Besides, Dynamic-SoS can be expanded to cover other pur-
poses of study, such as measuring other specific quality attributes, analyzing the threshold
or limit of constituents that still maintain the SoS feasible, applying a set of random recon-
figurations and studying the architecture behavior, and predicting the impact of specific
constituents on the entire SoS architecture.

5. Final Remarks

SoS architectural design is a challenging task due to diverse architectural configurations
that a SoS can assume at runtime and the complexity of assessing the impact of such
changes still at design time. Dynamic-SoS contributes to this scenario by providing an in-
frastructure that allows SoS architects to predict, via simulations automatically generated
at design-time, the SoS dynamic architectures, besides visualizing the SoS dynamics, and
their impact on the SoS associated behavior. We conducted nine case studies, generating
simulation models and analyzing the impact of changes on the functionalities provided
by the modeled SoS. Results brought evidence that Dynamic-SoS is a feasible and ef-
fective approach to predict SoS behavior associated with the inherent dynamics associ-
ated with their architecture. Motivated by these results, our future work involves dealing
with SoS dynamic architectures at runtime (i.e., after SoS deployment), advancing on
models@runtime research branch. We intend to draw strategies for the synchronization
between coalitions and SoS architectural specification, preserving SoS architectural con-
sistency, avoiding degradation and assuring the quality of this class of systems that has
been increasingly applied in several critical, complex application domains.

Acknowledgments

The authors thank São Paulo Research Foundation (FAPESP) (grants: 2014/02244-7,
2017/06195-9, 2017/17448-5, and 2018/21517-5) and National Council for Scientific and
Technological Development - CNPq (grant: 312634/2018-8).

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

253

References
[Bogado et al. 2017] Bogado, V., Gonnet, S., and Leone, H. (2017). DEVS-based

methodological framework for multi-quality attribute evaluation using software archi-
tectures. In CLEI, pages 1–10, Cordoba, Argentina.

[Cavalcante et al. 2015] Cavalcante, E., Batista, T. V., and Oquendo, F. (2015). Support-
ing dynamic software architectures: From architectural description to implementation.
In WICSA, pages 31–40, Montreal, Canada.

[de França and Travassos 2016] de França, B. B. N. and Travassos, G. H. (2016). Ex-
perimentation with dynamic simulation models in software engineering: planning and
reporting guidelines. Empirical Software Engineering, 21(3):1302–1345.

[Graciano Neto et al. 2020] Graciano Neto, V., Horita, F., dos Santos, R., Viana, D.,
Kassab, M., Manzano, W., and Nakagawa, E. (2020). S.o.b (save our budget) - a
simulation-based method for prediction of acquisition costs of constituents of a system-
of-systems. iSys, 13:6–35.

[Graciano Neto et al. 2017] Graciano Neto, V. V., Barros Paes, C. E., Garcés, L., Guessi,
M., Manzano, W., Oquendo, F., and Nakagawa, E. Y. (2017). Stimuli-SoS: a model-
based approach to derive stimuli generators for simulations of systems-of-systems soft-
ware architectures. Journal of the Brazilian Computer Society, 23(1):1–22.

[Graciano Neto et al. 2018a] Graciano Neto, V. V., Garcés, L., Guessi, M., Paes, C.,
Manzano, W., Oquendo, F., and Nakagawa, E. Y. (2018a). ASAS: An approach to
support simulation of smart systems. In 51st HICSS, pages 5777–5786, Big Island,
Hawaii, USA.

[Graciano Neto et al. 2018b] Graciano Neto, V. V., Manzano, W., Garcés, L., Guessi, M.,
Oliveira, B., Volpato, T., and Nakagawa, E. Y. (2018b). Back-SoS: Towards a model-
based approach to address architectural drift in systems-of-systems. In SAC, pages
1–3, Pau, France. ACM.

[Graciano Neto et al. 2018c] Graciano Neto, V. V., Manzano, W., Rohling, A. J., Fer-
reira, M. G. V., Volpato, T., and Nakagawa, E. Y. (2018c). Externalizing patterns for
simulations in software engineering of systems-of-systems. In SAC.

[Graciano Neto et al. 2019] Graciano Neto, V. V., Paes, C. E., Rohling, A. J., Manzano,
W., and Nakagawa, E. Y. (2019). Modeling & simulation of software architectures of
systems-of-systems : An industrial report on the brazilian space system. In SpringSim,
pages 1–12. Accepted.

[Guessi et al. 2015] Guessi, M., Graciano Neto, V. V., Bianchi, T., Felizardo, K. R.,
Oquendo, F., and Nakagawa, E. Y. (2015). A systematic literature review on the de-
scription of software architectures for systems of systems. In SAC, pages 1433–1440,
Salamanca, Spain.

[Guessi et al. 2016] Guessi, M., Oquendo, F., and Nakagawa, E. Y. (2016). Checking
the architectural feasibility of systems-of-systems using formal descriptions. In SoSE,
pages 1–6, Kongsberg, Norway.

[Heegaard and Schoitsch 2015] Heegaard, P. E. and Schoitsch, E. (2015). Introduction
to the special theme - trustworthy systems of systems. ERCIM News, 2015(102):8–9.

[Maier 1998] Maier, M. W. (1998). Architecting principles for systems-of-systems. Sys-
tems Engineering, 1(4):267–284.

[Manzano et al. 2019] Manzano, W., Graciano Neto, V. V., and Nakagawa, E. Y. (2019).
Dynamic-SoS: An Approach for the Simulation of Systems-of-Systems Dynamic Ar-
chitectures. The Computer Journal, 63(5):709–731.

Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática (CBSoft 2020)

254

