
Cataloging Dependency Injection Anti-patterns
in Software Systems

Rodrigo Laigner1, Marcos Kalinowski2

1Department of Computer Science (DIKU) – University of Copenhagen
Copenhagen, Denmark

rnl@di.ku.dk

2Departamento de Informática
Pontifı́cia Universidade Católica do Rio de Janeiro – Rio de Janeiro, RJ – Brazil

kalinowski@inf.puc-rio.br

Abstract. Dependency Injection (DI) is a prevalent technique employed in soft-
ware systems. By delegating the dependency provision to an independent agent
(i.e., a DI framework), developers often benefit from high-modular components.
However, the misuse of the DI technique leads to higher maintenance efforts. As
the literature presents no comprehensive characterization of bad DI implemen-
tation practices, we put forth an investigation that led to the proposition and
evaluation of a novel catalog of DI anti-patterns and refactorings. The propo-
sed anti-patterns appear frequently in both open-source and industry projects.
Furthermore, practitioners confirm the relevance and usefulness of the catalog.

Resumo. Injeção de Dependência (ID) é uma técnica predominante em sis-
temas de software. Ao delegar o provisionamento de dependências para um
agente independente (ou seja, um framework de ID), os desenvolvedores mui-
tas vezes se beneficiam de componentes altamente modulares. No entanto, o
uso incorreto da técnica de ID leva a maiores esforços de manutenção. Como
a literatura não apresenta uma caracterização abrangente de más práticas de
implementação de ID, apresentamos uma investigação que levou à proposição
e avaliação de um novo catálogo de antipadrões e refatorações de ID. Os anti-
padrões propostos aparecem com frequência em projetos de código-fonte aberto
e da indústria. Além disso, profissionais confirmam a relevância e a utilidade
do catálogo.

1. Background and Motivation
Dependency injection (DI) is a prevalent and industry-strength technique employed in
software systems today. DI allows decoupling classes from their dependencies (through
an interface-oriented design) by outsourcing the dependency provision process to an in-
dependent agent, the so-called DI container [Fowler 2004]. DI has become a traditio-
nal practice in industry as characterized by the existence of several popular dependency
injection frameworks, such as Spring and Guice, and the embedded support of depen-
dency injection in modern frameworks such as .NET Core from Microsoft. Although
the DI practice is popular, the implementation of DI is not trivial and demands in-depth
knowledge on object-oriented design. Most importantly, improper dependency injection
usage may actually hinder the effective achievement of its main goal, loose-coupling.



While the technical and white literature conjecture about the existence of depen-
dency injection anti-patterns and smells, these propositions do not provide a comprehen-
sive analysis of the state of the practice For instance, the practical relevance of these pro-
positions is unknown (e.g., the degree of occurrence in real projects and whether design
principles are harmed), as well as their generalizability. Moreover, there is no evidence on
the acceptance and perceived usefulness from the developers’ point of view. Therefore,
developers’ needs are insufficiently met when reasoning about the benefits and trade-offs
when it comes to adoption of dependency injection in the source code. Given this clear
gap, the goal of this work is to provide a framework of ideas and tools to effectively
address dependency injection in software systems.

2. Methodology
We started by reviewing suggestions of dependency injection anti-patterns and discus-
sing their shortcomings. Next, we put forth two methodological approaches to derive an
initial proposition of DI anti-patterns, inductive and deductive. We hypothesized about
the existence of dependency injection practices that cause harm to modularity in light
of object-oriented design principles, and provided a comprehensive set of anti-patterns
that serves as an easy to use guideline for software developers in the wild. To validate
our proposition, we built a static analysis tool to automatically identify instances of the
proposed dependency injection anti-patterns in software systems. The tool showed high
efficacy and it revealed that the DI anti-patterns appear frequently in both open-source and
industry projects. Next, to empirically strengthen our contribution, we surveyed several
expert developers on the benefits of each proposed anti-pattern and collected feedback on
their practical relevance and usefulness. Lastly, for each anti-pattern, we also devised a
respective refactoring suggestion.

3. Results and Concluding Remarks
The initial results of this work have been presented and awarded at SBES
2019 [Laigner et al. 2019] and an extended version with the complete results is curren-
tly under the revision at the Journal of Systems and Software [Laigner et al. 2021]. The
catalog contains DI anti-patterns that occur in practice and are considered useful. The
corresponding refactorings also show large acceptance from developers. Sharing it with
practitioners can help them to avoid and to remove such anti-patterns, improving the qua-
lity of their code. Furthermore, given that dependency injection is a widely adopted prac-
tice in real-world settings, we hope that our work raises the awareness of the research
community, helping to steer future investigations on the topic.

Referências
Fowler, M. (2004). Inversion of control containers and the dependency injection pattern.

Laigner, R., Kalinowski, M., Carvalho, L., Mendonça, D. S., and Garcia, A. (2019).
Towards a catalog of java dependency injection anti-patterns. In Proceedings of the
XXXIII Brazilian Symposium on Software Engineering, SBES 2019, Salvador, Brazil,
September 23-27, pages 104–113.

Laigner, R., Mendonça, D., Garcia, A., and Kalinowski, M. (2021). Cataloging depen-
dency injection anti-patterns in software systems. Under revision at the Journal of
Systems and Software (JSS) - e-print available at https://arxiv.org/abs/2109.04256.


