PAXSPL: A Generic Framework to Support the Planning of
SPL Reengineering

Luciano Marchezan', Elder Rodrigues®, Maicon Bernardino?

'ISSE - Johannes Kepler University Linz Linz — Austria

lucianomarchp@gmail.com

*Universidade Federal do Pampa (UNIPAMPA)
Av. Tiaraju, 810, Ibirapuita — Alegrete, RS — Brasil

{elderrodrigues, bernardino}@unipampa.edu.br

Abstract. Extractive Software Product Line (SPL) is a well-known approach
that organizations can use to transform their legacy applications into an SPL.
In this sense, the SPL reengineering process emerges as a possible strategy for
applying the extractive SPL. Available artifacts used to perform the SPL reengi-
neering may change, requiring software engineers to adapt their approaches
as a means to satisfying the companies’ scenarios. However, there is a lack of
an approach supporting this adaptation considering different scenarios. To ad-
dress these limitations we propose the Prepare, Assemble, and Execute Frame-
work SPL reengineering (PAxSPL). PAxSPL is composed of three different as-
pects: a process, guidelines, and a supporting tool. For evaluating PAxSPL, we
extracted eight different scenarios from the literature. Results evidenced that
PAXSPL is customizable to a variety of scenarios with different reengineering
artifacts, techniques, and activities.

Resumo. A abordagem de Linhas de Produto de Software (SPL) extrativa pode
ser usada por organizagdes que pretendem transformar seus sistemas legados
em SPL. Nesse contexto, o processo de reengenharia de SPL é uma possivel es-
tratégia para se aplicar esta abordagem. Os artefatos disponiveis usados para
se realizar a reengenharia de SPL podem mudar, exigindo que os engenheiros
de software adaptem suas abordagens para se adequar aos cendrios das em-
presas. No entanto, identificamos a falta de uma abordagem que de suporte a
esta adaptagdo considerando diferentes cendrios. Para atender essa limitagdo,
propomos o Prepare, Assemble and Execute framework para reengenharia de
SPL (PAxSPL). PAXSPL é composto por trés partes diferentes: um processo,
diretrizes e uma ferramenta de suporte. Para avaliar o PAXSPL, extraimos oito
cendrios diferentes da literatura. Os resultados evidenciaram que o PAXSPL é
customizadvel para uma variedade de cendrios com diferentes artefatos, técnicas
e atividades de reengenharia.

1. Introduction

Software development companies must ensure the quality of software products to meet
user’s needs and remain competitive. Yet, these companies also have to find ways to re-
duce development time and costs [Kriiger et al. 2020]. This trade-off leads companies to

look for solutions such as software Product Line Engineering (SPLE). SPL is an industry-
proven software development approach that relies on software reuse to enable compa-
nies to more effectively and efficiently develop their product portfolios [Pohl et al. 2005].
This software reuse can be based, for example, on existing artifacts, assets, or expertise
of developers [Capilla et al. 2019]. The most common way to adopt SPLE is by em-
ploying an extractive strategy [Kriiger et al. 2020]. Companies usually have many sys-
tem variants developed using opportunistic reuse, which is the basis for the SPLE ac-
tivities [Assuncao et al. 2017]]. Extractive adoption of Software Product Lines (SPL) is
conducted by a reengineering process that encompasses the identification and extraction
of common and variable features [Laguna and Crespo 2013|]. This process is divided into
three phases, namely detection, analysis, and transformation [Assuncao et al. 2017]. A
proper plannin of all these steps is paramount for the success of the SPL adoption.

Despite the great number of studies on the topic of SPL reengineer-
ing [Assuncao et al. 2017, Laguna and Crespo 2013]], we observed limitations that mo-
tivated us to propose PAXSPL. Firstly, the studies in the literature mostly focus on tech-
nical aspects of the variants, namely identification of commonalities and variabilities
among variants implementation [Eyal-Salman et al. 2013} |[Paskevicius et al. 2012], with-
out taking into account organizational aspects, e.g., team experience. Considering only
technical aspects hampers the application of the SPL reengineering process in real-world
scenarios. Secondly, among existing pieces of work, we could see that the vast majority
of approaches are inflexible and strictly designed for a specific scenario, hampering their
use in other companies and systems. Thirdly, existing automated support is mainly based
on academic prototypes developed for validating an approach, not mature enough to be
used in practice [Laguna and Crespo 2013]]. These tool prototypes, although important
to be used as a proof-of-concept, are not designed with a focus on the end-user, limiting
their application in real scenarios.

Based on the aforementioned limitation of existing approaches, in this work, we
present the Prepare Assemble and Execute Framework for SPL. Reengineering (PAXSPL).
PAXSPL framework is an evolution of the PAXSPL process [Marchezan et al. 2019],
adding scoping specific information collected through the execution of a System-
atic Literature Review (SLR), as well as the development of a supporting tool.
PAXSPL was evaluated with eight distinct scenarios extracted from the ESPLA cata-
log [Martinez et al. 2017]. We instantiated these scenarios using technical and organi-
zational aspects to better understand the benefits and drawbacks of our framework. The
results of the evaluation indicate that our framework supports the planning of a vari-
ety of SPL reengineering scenarios, considering different artifacts (more than 20 types),
techniques (at least five), and activities. The results also evidence that our framework
organizes and generates a repository of documents containing both technical and organi-
zational information that might be important for the SPL reengineering analysis and evo-
lution. We also identified eight challenges, that were used to discuss the lessons learned
when conducting the evaluation.

The remainder of this work is structured as follows: Section [2| presents the back-

'In this work, SPL reengineering planning refers to the activities for initiating, instantiating, docu-
menting, and analyzing the activities, techniques, methods, and tools to be used along all the reengineering
process.

ground with the main concepts from our research. Section 3| presents the PAXSPL frame-
work and its supporting tool. Section [presents the evaluation performed. Section [3]
concludes this work.

2. Background
In this section, we describe the main concepts related to our work.

SPL is defined by [Clements and Northrop 2002] as a set of software-intensive
systems that share a common and managed set of features satisfying the specific needs of a
particular market and that are developed from a common set of core assets in a prescribed
way. As defined by [Pohl et al. 2005]], “SPLE is the paradigm responsible for the devel-
opment and study of SPLs. It uses platforms and mass customization concepts to enable
variability management”. There are three possible approaches for an organization moving
from traditional software to SPL: proactive, reactive, and extractive. The extractive ap-
proach is the most indicated when the organization already has a set of software variants
because it allows to identify and extract the commonalities and the variabilities among
them. This process of extraction is called SPL Reengineering [[Assuncao et al. 2017].

In the SPL context, reengineering is used to transform a system, system family, or
system variants into an SPL. According to [Assuncao et al. 2017], the SPL reengineering
process is composed of three main phases: detection, analysis, and transformation. Dur-
ing the first phase, detection, variability, and commonalities of the products are identified
and extracted from the system variants through the use of feature retrieval techniques.
These characteristics are represented in the form of features. Techniques and methods
used during this phase aim to extract data from artifacts, such as class diagrams and
source code. The second phase is analysis, where the discovered features are organized
as a feature model. The feature model is the most used mechanism to represent SPL
variability [Clements and Northrop 2002]. In the SPL context, the feature model is repre-
sented in a tree structure, where its root is usually the SPL being modeled. The last phase,
transformation, is when artifacts linked with these features are managed and modified to
create the SPL.

In the context of SPL reengineering, planning also has to consider costs and busi-
ness goals. A plan to apply SPL-based techniques considering business alignment and
goals is called scoping [John 2010]]. SPL scoping aids companies to define the boundaries
of their products. Literature abounds with proposals for SPL-based production plans as
surveyed in [John and Eisenbarth 2009]. These works are devoted to characterizing par-
ticular artifacts and tasks for specific domains. Proposals such as PuLSE are well-known
in the literature and despite being developed for being customizable, the approach does
not provide guidance for adaptability for a reengineering context.

3. The PAXSPL framework

In this section, we describe the evolution from past work, as well as how PAXSP cus-
tomization is possible. We also explain how we handle SPL scoping in the SPL reengi-
neering context.

’Further details are found in our framework repository at https://github.com/
HestiaProject/PAXSPL/

https://github.com/HestiaProject/PAxSPL/
https://github.com/HestiaProject/PAxSPL/

3.1. Evolution from Past Work

To evolve the PAXSPL process [Marchezan et al. 2019], we conducted a SL to investi-
gate SPL scoping approaches. We identified, analyzed, and extracted important informa-
tion from SPL scoping works found in the literature. The search was carried out in six
digital libraries, as well as by performing snowballing. With the results of the search, and
selection of studies by applying inclusion/exclusion and quality criteria, we analyzed a
total of 44 studies, identifying 32 different proposals. This analysis allowed us to identify
the major approaches in the field, establishing a feature model of SPL scoping concepts
(Figure [3) and a generic scoping process (Figure [d)). This information includes similar-
ities and differences among these approaches as well as scoping concepts and research
opportunities. All this information was included in PAXSPL guidelines. Furthermore,
we developed a supporting tool to guide users when performing the process. The require-
ments of the supporting tool were defined based on PAxSPL activities, limitations found in
the literature [Assuncao et al. 2017] and the analysis of related tools [Pereira et al. 2015]].
PAXSPL framework, including its process, guidelines, and tool are discussed next.

3.2. Customization for Different Scenarios

The Prepare, Assemble, and Execute framework for SPL Reengineering (PAXSPL) was
designed for giving its users enough guidance when conducting feature retrieval of legacy
systems. As organizational contexts change, the approach must cover these changes.
Thus, we defined guidelines with alternatives techniques and strategies for performing
the retrieval. As illustrated in Figure |1, we grouped the techniques based on their strat-
egy. We have the mandatory group of Retrieval Techniques which are composed of two
Or-alternatives (at least one must be selected), Static Analysis, e.g., dependency analy-
sis, and Information Retrieval techniques, e.g., clustering. The second group is optional,
composed of three techniques: Expert Driven Extraction, Rule-Based Techniques, and
Heuristics. These techniques should be executed only to improve the result of the re-
trieval strategies of the first group.

‘ FeatureRetrievalTechngiues ‘
RetrievalTechniques l SupportTechniques l

l StaticAnalysis l l InformationRetrieval l

lDependencyAnaIysisHData-FIowAnaIysisH Clustering " LSI H VSM H FCA HExpertDrivenl lHeuristicsH Rule-based]

LSI - Latent Semantic Indexing; VSM - Vector Space Model; FCA - Formal Concept Analysis.

Figure 1. A Feature Model of Retrieval Techniques.

Based on the selection of the techniques, the user would assemble them into the
generic process for feature retrieval, shown in Figure 2| The process is composed of four
basic activities. An example of an assembled process would be using Formal Concept
Analysis (FCA) during the Extract task, Latent Semantic Indexing (LSI) for the Catego-
rize and clustering for Group. Then, the feature artifacts would be converted to a feature
model.

3This SLR is currently under review by an international journal. The complete SLR protocol and results
are found in Chapter 4 of our thesis [Marchezan 2020]].

Not Ok Not Ok

Generic Process

Create
Feature
Model

HMelricsDeﬁnilion

Archi(ectureDeﬁnitionHPrioritizeProductsH‘ iabil f HF tureDefiniti
y ‘eatureDefinition

CostModels | |(CustomerNeeds

Figure 3. A feature Model of SPL Scoping Concepts

In addition to the feature retrieval, PAXSPL also guides customization considering
the SPL scoping. As a result of the aforementioned SLR, we were able to establish a
feature model of scoping concepts. Figure [3| presents these concepts which are divided
by Scoping type, e.g., architecture definition, and Supporting concepts, e.g., evolution
planning.

Similar to the feature retrieval strategies, the scoping concepts must be selected by
PAXSPL’s users and assembled into a generic SPL Scoping process, presented in Figure]
Pre-Scoping is the first task, where supporting concepts from the Scoping feature model
may be used, such as metrics definition. Then, the users would assemble the activities
related to which scoping type. The selection of activities is performed based on the user’s
context. For instance, a market analysis may be performed in the domain scoping activ-
ity. As presented in the BPMN model, the activities related to the scoping type are not
mandatory, however, at least one must be performed. Lastly, the scoping closure activity
is executed. This activity is generic as several ways to close the scoping process may be
performed, such as evolution planning.

Damain
I Scoping I
Product Scoping
Agset Scoping

Figure 4. A Generic SPL Scoping Process.

A Generic SPL Scoping Process

3.3. PAXSPL Process

To aid the decisions related to selecting the strategies and techniques for feature retrieval,
and SPL scoping, we defined PAXSPL process. The process is presented in Figure [5]
divided into three main phases: prepare, assemble and execute.

PAXSPL

Prepare Assemble

Collect Team
Information

Assign Roles

Select

i Techniques
H]

Assemble
Techniques

Feature Retrieval

Execute

Execute
Assembled
Process

Document
Feature
Artifacts

Perform
Documentation
Analysis

Assign Tasks

Document
Process
Experience

+

O

Execute
Scoping
Process

[+] H i
+ | i
i Assemble i
| | Scoping Process | !

Scoping

Figure 5. PAXSPL process workflow.

Prepare: during this phase, team information is collected including the experi-
ence, skills, knowledge, and preferences of each member. Then, roles are assigned based
on the team information collected. Possible roles are: Domain Engineer, Analyst, Ar-
chitect, and Developer. These roles are related with the following sub-process, which is
Perform Documentation Analysis. Here, domain information, constraints, requirements
information, architecture, technologies, and additional information from the systems be-
ing analyzed are collected. Some artifacts have a higher level of impact when choosing
a technique for retrieving the features, but they all must be used to assemble the process.
After this activity, we have a parallel gateway that divides the main workflow into feature
retrieval and scoping.

Assemble: in this phase, the data collected previously are analyzed to help the
selection of techniques for feature retrieval. The users should analyze whether their sce-
nario contains some similarity in comparison with the scenarios on which the technique
was used (such information is present in PAXSPL guidelines). The second activity is As-
semble Techniques where the chosen techniques are assembled inside our generic process,
shown in Figure [2| The last activity is Assign Tasks, where each member of the team will
receive a task to perform during the retrieval process execution. In this case, one member
may perform multiple tasks and a task can be performed by multiple members. Still, dur-
ing the Prepare phase, the scoping process should be assembled using the scoping feature
model and the scoping generic process.

Execute: during this phase, the feature retrieval is performed and the feature arti-
facts are collected. The first activity is Execute Assembled Process, where the assembled
process is executed to detect, extract, categorize, and group the features according to the
selected techniques. The second activity is Document Feature Artifacts, here, artifacts are
documented in a structured way according to the techniques selected. Artifacts may be
variability reports, feature descriptions, data dictionary among other. Lastly, reports are
created to document the experience of the process execution during the Document Process
Experience activity. These reports may be used in future re-execution of the process (e.g.,
when new features emerge from clients’ demand, or for different software products of the
same organization), reducing cost and effort. In parallel, the scoping process is executed,
ending the process execution.

3.4. Guidelines and Supporting tool

By analyzing other SPL reengineering approaches, mapping the used strategies and ar-
tifacts, we created a set of guidelines. These guidelines contain support documentation
to help to choose techniques, describe each one, give examples, supporting tools, de-
fine recommended scenarios and give a prioritization assemble order when assembling a
technique into the generic process. Among the many information found in the guidelines
section of our process, we included a basic introduction to SPL and its main concepts. We
also provided information about variability management and feature model notations and
tools. These guidelines are important for selecting both the feature retrieval techniques
and scoping concepts. We aimed at giving support to newcomers, however, the guidelines
may also aid experienced practitioners.

These guidelines were implemented into our supporting too]ﬂ The tool was de-
veloped following an iterative development life-cycle. For that, we performed three iter-
ations, on which we defined requirements based on the following: i) automated support
to PAXSPL activities [Marchezan et al. 2019]; ii) address limitations evidenced in the lit-
erature [Marchezan et al. 2019, |Assuncao et al. 2017, Laguna and Crespo 2013|], and iii)
end-user requirements of similar tools [Pereira et al. 2015]. More details related to our
tool are available in Chapter 5 in our thesis [Marchezan 2020].

4. Evaluation

We performed a study to evaluate PAxSPL. In this section, we describe the goal, research
questions (RQs), the dataset used, and the execution of this study.

4.1. Goal and Research Questions

The main goal of our study is to evaluate how PAxSPL supports and automates the SPL
reengineering planning for different scenarios. Thus, we aim to apply PAxSPL to cus-
tomize different reengineering processes in scenarios observed in related works. The RQs
that guided the evaluation are:

RQ1. Is PAXSPL customizable to different scenarios?
RQ2. How does PAXSPL suit different scenarios?
RQ3. What challenges are observed by customizing PAXSPL?

More specifically, RQ1 gives evidence about PAXSPL customization capabilities.
Different from RQ1 where we only looked if the assembled process would be executed in
the original scenario, in RQ2 we look at how this assembled process would be executed.
Hence, if any problems emerged, or even if some activities from the original scenario were
not performed by the assembled process. Lastly, we want to identify all challenges faced
when customizing PAxSPL for these different scenarios. Therefore, RQ3 was defined for
collecting and analyzing these challenges and how they have impacted the customization
process.

40ur tool is open source and its documentation, including user stories, is available at https://
tinyurl.com/paxspltool

https://tinyurl.com/paxspltool
https://tinyurl.com/paxspltool

4.2. Dataset and Execution

The dataset used as input for this evaluation is composed of studies that report on the
execution of an SPL reengineering process. We selected studies mapped in the ESPLA
catalog [Martinez et al. 2017]], which is a collaborative catalog of case studies on SPL
reengineering. We randomly selected the studies from the catalog, applying three criteria
in each of them, for deciding to include it or not. The study should be approved in all
the following three criteria to be selected for this evaluation: i) The study applies at least
one retrieval technique supported by our framework: we only considered studies that
applied at least one retrieval technique among those covered by PAXSPLE] For example,
in a study that applies three techniques, if one of them is covered by PAxSPL, this criteria
is satisfied, even that the other two techniques are not supported. ii) The study presents
a different scenario from other studies previously selected: we want to guarantee that
all selected studies have different scenarios from each other. We considered different
scenarios when the study used at least one different retrieval technique, used at least one
different input artifact, or had a different workflow when applying the feature retrieval
techniques. iii) The study evaluation protocol, dataset, and results are available online:
Thus, we could extract their activities, artifacts, and techniques to conduct our evaluation.

After applying these criteria to 23 studies randomly selected from the ESPLA cat-
alog, we composed a final set of eight studies, to be used as input for PAxSPL evaluationE]
Table [I] presents the data extracted from these studies. There is a variety of different ar-
tifacts from the studies, ranging from domain to development artifacts. Also, different
techniques were used in these scenarios. There is also a different combination of tech-
niques, which defines a different scenario. We executed PAXSPL in each scenario, i.e., the
artifacts, retrieval techniques, and activities, from the selected studies. Hence, once we
started PAXSPL execution for one scenario, we intend to observe if we can fully represent
that scenario. We focus on evaluating how PAXSPL automates the planning of the SPL
reengineering process, comparing to the original process observed in the original study.
For each study selected, we performed the following steps: 1) identify and register inputs
and output artifacts; ii) identify and register feature retrieval techniques used; iii) iden-
tify the feature retrieval activities and their workflow; and iv) execute PAXSPL using the
artifacts, techniques, and activities identified.

After executing these steps, we collected information to answer the RQs by an-
alyzing: 1. The number of artifacts from the original study that were used by PAxSPL
(RQ1 and RQ2); 2. The retrieval techniques that were instantiated into PAXSPL generic
process (RQ1 and RQ2); 3. The activities that were instantiated into PAXSPL generic
process (RQ1 and RQ2); 4. The number of scenarios for which PAXSPL was able to
adapt to (RQ2); 5. The challenges and limitations found when adapting the scenarios
using PAxSPL (RQ3).

4.3. Results and Analysis

In the following, we present the results and two artifacts generated by our tool during this
execution. Due to space limitations, we only present examples of the artifacts for the first
scenario. All artifacts are available in Chapter 6 of our thesis [Marchezan 2020].

SPAXSPL supports the same retrieval techniques presented in [Marchezan et al. 2019].
Selected studies/scenarios, and evaluation artifacts are available in https://doi.org/10.
5281/zenodo.4024524.

https://doi.org/10.5281/zenodo.4024524
https://doi.org/10.5281/zenodo.4024524

Table 1. Data Extracted from the Original Studies

Reference

Artifacts

Techniques

Activities

[Eyal-Salman et al. 2013

[Acher et al. 2013]

[Al-Msie’Deen et al. 2012

[Shatnawi et al. 2014

[Alves et al. 2008

[Chen et al. 2005]

[Paskevicius et al. 2012]

[Breivold et al. 2008}

object-oriented source code; feature descrip-
tions

150% architecture of the system; specifica-
tion of the system plugins; system plugins
dependencies; architectural FM; plugin FM;
constraints mapping; enhanced architectural
FM;

object-oriented source code; object-oriented
building elements; commonalities and varia-
tions; blocks of variations; atomic blocks of
variation;

object-oriented source code; component ar-
chitecture; sets of component variants; con-
cept lattice; architecture variability;

requirement documents; requirements clus-
ters; configurations; feature model;

individual requirements; requirements rela-
tionship graph; application feature trees; do-
main feature tree;

java source code; java .class files; depen-
dency graph; feature distance matrix; cluster
dendrogram; feature model; Feature model
defined in FDL/Prolog;

architecture description; design documents;
source code; user documentation; require-
ments specification; architecture require-
ments; common core assets; variable assets;
SPL architecture;

LSI; FCA; clus-
tering;

dependency
analysis; struc-
tural similarity;
clustering;

LSI; FCA;

dependency
analysis; FCA;
ROMANTIC
approach;
LSI;
Space
clustering;
clustering;

Vector
Model;

dependency anal-
ysis; clustering;

dependency anal-
ysis;

i) Use LSI to divide features and classes into com-
mon and variable partitions; ii) fragment variable par-
titions into minimal disjoint sets using FCA; iii) de-
rive code-topics from common class partition; iv)
perform traceability links between features and their
code-topics; v) determine which classes implement
each feature.

i) extraction of a raw architectural FM; ii) extraction
of plugin dependencies to derive inter-feature con-
straints from inter-plugin constraints (plugin FM); iii)
automatically reconstruction of the bidirectional map-
ping between the architect FM and plugin FM; iv)
explore the mapping to derive enhanced architectural
FM.

i) analyze OO source code to extract OO building ele-
ments; ii) commonalities and variations are extracted
using FCA (blocks of variations); iii) blocks of vari-
ations are divided into atomic blocks and features are
identified based on textual similarity using FCA and
LSI

i) extract component-based architecture; ii) identity
component variants; iii) use FCA to analyze the com-
monality and variability; iv) identify architecture vari-
ability.

i) perform a requirements similarity determination; ii)
abstract requirements clusters into a configuration; iii)
merge configurations for all requirements.

i) requirements elicitation; ii) requirements relation-
ship graph construction; iii) requirements clustering
and hierarchical structure construction; iv) merging
and variability modeling.

i) compile Java source code using a standard Java
compiler ; ii) extract feature dependencies from Java
class files; iii) construct a feature distance matrix; iv)
cluster features based on their dependency in a feature
tree; v) convert a feature tree into a FM; vi) generate
description of FM in FDL/Prolog.

i) identify requirements on the software architecture;
ii) identify commonalities and variabilities; iii) re-
structure architecture; iv) incorporate commonality
and variability; v) evaluate software architecture qual-
ity attributes.

4.4. Scenario’s Results

The first scenario was extracted from [Eyal-Salman et al. 2013]]. Figure|6(a) presents the
BPMNIZ] representation of the instantiated retrieval process. The five activities and their

ions were made

dificat

I, MIinOr mo

1 study, howeve

rigina

workflow were based on the o

due to some challenges faced (see Section [4.5]). As the first scenario of the evaluation,

, and activities were previously

iques

11 aspects as no artifacts, techn

1S was unique m a

th

executed. PAXSPL gave support to the documentation of the different types of artifacts

7All BPMN diagrams and reports were generated by our tool.

1 Phase: Extract

Activity: Divide features with LSI
Description: | Use LS| to divide features and classes into common and variable

| partitions;
Retrieval Latent Semantic Indexing
Extract plugin — | Technique:
dependencies 0 Antfact:1 Input
Check

architectural FM

Extract raw ' Ok

Derive
enhanced
architectural FM

Artifact:3 Output
Name: Common and variable partitions

Check

and generate | Name: | Objected-oriented Source Code
Type | Development

plugin FM Type D
Description: | Classes that implement common and optional features

Ok Description: | Souce code of the argoUML
Ok RECOnslructiun
of bidirectional
mapping
Check
Extension: | .Isi

Extension: | .java
(a) BPMN Process Instantiated Link (url): | https://github.com/argoum|-tigris-org/argouml

Link (url): https://github.com/argouml-tigris-org/argouml|
Last 05-24-2020 by Luciano
Last 05-27-2020 by Luciano

for [Eyal-Salman et al. 2013] Update:

Update:
(b) Report excerpt for [Eyal-Salman et al. 2013]]

Figure 6. Excerpt of artifacts generated for the first scenario

and activities. All the three techniques from this scenario (LSI, FCA, and clustering)
were present in our tool, and PAXSPL also gave support when selecting them. Figure
presents part of the report detailing one activity instantiated into the process as well as
one input and one output artifact. In this case, the Divide features with LSI activity is
detailed. This activity contains two input artifacts, the Object-oriented source code and
the Features descriptions; and one output artifact, the common and variable partitions.
This report is important as it demonstrates how the activities were performed during the
reengineering and the artifacts generated from them. This can be used as the requirements
documentation of the SPL, also allowing evolution planning.

The second scenario was defined by extracting the information
from [Acher et al. 2013]]. In this case, the process was composed of four activities
which were described in Table[I} Although it was possible to assemble all activities from
the original study, we faced some challenges, similar to the first scenario. In comparison
to the first scenario, this scenario uses different artifacts types, and two different tech-
niques. The third technique, clustering, was also present in the first scenario, however, its
application (an activity where it was applied) was different from scenario one. The third
scenario used in the evaluation was extracted from [Al-Msie’Deen et al. 2012]]. Consid-
ering the challenges faced when assembling this scenario, we faced two that were present
in the previous scenarios. This scenario also has some similarities with those described
earlier, as two retrieval techniques (one from the first and one from the second scenario)
were also present here. We extracted the fourth scenario from [Shatnawi et al. 2014]]. The
FCA and dependency analysis techniques were present in this scenario either. However,
one technique used in the original study was not supported by PAxSPL.

The fifth scenario wused during the evaluation was extracted
from [Alves et al. 2008]. Considering the similarities of the scenario, the cluster-
ing, and LSI techniques were also present here. Also, the Vector-Space Model technique
was used, being the only scenario where it was present. The sixth scenario was extracted
from [Chen et al. 2005]] In this scenario, only the clustering technique was used, making
it the most common retrieval technique up to this point. The seventh scenario was
defined by extracting the information from [Paskevicius et al. 2012]. The clustering
and dependency analysis techniques were present once again. This scenario also shares
characteristics concerning the artifacts used, which were object-oriented source code,

the same as the first, third, and fourth scenarios. The eighth scenario was extracted
from [Breivold et al. 2008]]. This scenario also used the dependency analysis retrieval
technique, which appeared in the other three scenarios. Another similarity is the artifacts
type, in this scenario architecture descriptions and source code were used, similar to the
second and fourth scenarios.

4.5. Answering the RQs

With the analysis of the evaluation results, we were able to answer our RQs, as discussed
in the following.

RQ1. Is PAXSPL customizable to different scenarios? Although we faced different
challenges in all eight scenarios where our framework was applied, the results pointed out
the PAxSPL applicability in each individual scenario. In this sense, the PAXSPL supported
100% of the artifacts (see Table [2)), 100% of activities (considering minor changes), and
approximately 85% of the techniques (17 out of 20). As we replicated each original
scenario as similar as possible, our main goal when analyzing this RQ was to understand
the benefits of maintaining the aforementioned information. In this sense, we could see
that such information is important for deciding which artifacts, techniques, and activities
would be used, as well as for maintaining the reasons for making these decisions. This
result is evidence by the reports generated in the tool, e.g., Figures These artifacts
are important for the planning phase of PAXSPL because they aid the users in abstract the
techniques selection process by making them (users) consider different aspects of their
context. Also, the reasons for making the decisions are important to understand why the
decisions worked (or did not work) when performing the reengineering. Therefore, we
can also argue that our framework provides a way of maintaining a repository of artifacts
related to the reengineering. These artifacts can be used when transforming the legacy
system into an SPL, as well as when planning the SPL evolution.

RQ2. How does PAXSPL suit different scenarios? As presented in Table |1} all eight
scenarios were different, using a variety of different artifacts, techniques, and activities.
Table @ summarizes these results, showing how many artifacts, activities, and techniques
from the original studies were supported by PAXSPL. All artifacts used in the original
studies could also be used in PAXxSPL, which shows that concerning artifacts flexibility,
our framework handled more than 20 different types of artifacts. The same results apply
to the activities instantiated, as all activities from the original studies could be instanti-
ated into the PAXSPL generic process. Also, five different retrieval techniques were used,
and their different combinations made all scenarios unique. This variety among the sce-
narios, alongside the fact that we could instantiate all the processes, gives us evidence
suggesting that our framework is indeed customizable for different scenarios. However,
we faced a few challenges. Some of these challenges directly impact the results of this
RQ. These challenges were not crucial problems, however, they must be considered aim-
ing at improving our proposal. For instance, some techniques from the original studies
were not supported by PAXSPL. Hence, these techniques could not be instantiated into
the retrieval process. In addition, other challenges were identified during the evaluation.
These challenges are discussed in the following section.

RQ3. What challenges are observed by customizing PAXSPL? Table [3| summarizes
the eight challenges identified during the evaluation. Also, it presents possible solutions

Table 2. Results from the Evaluation.

Ref. Art. Tech. Act. Challenges
O S O S O S C1 C2 C3 Cc4 C5 C6 C71 c8
[Eyal-Salman et al. 2013] 6 6 4 4 5 5 v v v
[Acher et al. 2013] 7 7 3 2 4 4 v v v v
[Al-Msie’Deen et al. 2012] 5 5 3 3 3 3 v v v v
[Shatnawi et al. 2014] 5 5 3 2 4 4 v v v
[Alves et al. 2008] 4 4 3 2 3 3 v v
[Chen et al. 2005 4 4 1 1 4 4 v v
[Paskevicius et al. 2012] 7 7 2 2 6 6 v
[Breivold et al. 2008]| 9 9 1 1 5 5 v v v
O - Original Study; S - PAXSPL Support.

Table 3. Challenges Identified During the Evaluation.

ID Description ID Possible Solution

Cl Some activities from the original study were performed PS1 Change the generic process to support parallelism
in parallel
C2 An activity did not apply any retrieval technique PS2 Allow the users to define activities without the applica-
tion of retrieval techniques
C3 Some phases of the generic process did not have an ac- PS3 Change the generic process to make activities or-

tivity related to it optional

C4 A technique that was not supported by PAXSPL was PS4 Allow the user to add new techniques into the frame-
used in an activity work

C5 One activity used more than one retrieval technique PS5 Allow the user to assemble multiple retrieval techniques

into an activity
C6 One activity was part of more than one phase of the PS6 Allow the user to create activities that are part of more

generic process than one phase
C7 The approach did not aim at generating a FM PS7 Change the last activity to aim at creating any kind of
variability model
C8 The original scenario had no input artifacts PS8 Make the inclusion of technical artifacts optional during

the initiation step

to address them. The first challenge (C1) occurred in the first two scenarios. As the
generic process does not support parallel activities, we had to handle this problem by
transforming these activities into linear ones. However, a possible solution (PS1), would
be to change the generic process and its instantiation to support parallel activities. The
second challenge (C2) was the most frequent, appearing in six scenarios. This challenge
occurred when an activity from the original study did not apply any retrieval technique.
We argue that PS2 may address it by changing the framework to allow the users to assem-
ble activities in the generic process without the need of assembling retrieval techniques
for them. Challenge C3 was related to some phases of the generic process not receiving
activities during the assembly. For instance, in the second scenario, the group activity was
not used. As defined in its BPMN representation, however, all its phases are mandatory.
Changing the generic process to make its activities Or-optional, meaning that at least one
is mandatory is a possible solution (PS3). Challenge C4 was faced twice when techniques
that were not present in the framework were used. We believe that C4 can be addressed
by allowing the users to add or suggest the addition of new retrieval techniques into our
framework (PS4). This could be done by providing a template or an online form for users
to fill and send us.

Challenge C5 was identified when one of the activities from the original study
applied more than one retrieval technique in parallel. As our framework does not give
support to this, we should allow users to assemble multiple retrieval techniques into a
single activity (PS5). The next challenge, C6, is related to one activity being part of more

than one phase of the generic process, for instance, extract and categorize. The possible
solution (PS6) would be to allow the users to create activities that are part of more than
one phase. The seventh challenge identified (C7) was faced when two of the scenarios
did not aim at generating an FM at the end of their process. This challenge is different
because PAxSPL’s final output should be the FM. However, we still understand that C7 is
an opportunity for improvement as a company that works or desires to have a variability
artifact different from an FM, such as an SPL architecture. Thus, we plan to change the
last activity of the process to support the creation of different variability models (PS7).
Challenge C8 appeared only in one scenario [Chen et al. 2005]], where their approach
did not have input-only technical artifacts. Input-only artifacts are those collected and
analyzed during the PAXSPL’s initiation step, which can be organizational or technical.
To address C8, we would make the inclusion of technical artifacts optional during the
initiation step (PS8), relying on the decision only on organizational artifacts.

By analyzing these challenges, we identified at least eight points (possible solu-
tions) for improving PAXSPL. However, we can also argue that these results can contribute
to other researchers/practitioners that are developing or applying similar proposals/tools
considering different scenarios. As most of the challenges faced were related to the dif-
ferences across the scenarios used as input for the evaluation, such challenges can occur
when using similar tools and proposals. Thus, the possible solutions identified can also
be used to address these challenges.

4.6. Threats to Validity

Next, we present the threats of our study and how we tried to mitigate
them [Wohlin et al. 2012]].

Construct validity: an important threat concerns the selection of relevant scenarios
for conducting the customization. This may be a threat if the scenarios selected were
not reliable enough to be considered relevant when extracting and analyzing the results
of the evaluation. To mitigate this, we used a well-known catalog of SPL case stud-
ies [Martinez et al. 2017]. Another threat is related to the selection of scenarios that may
or may not be useful for our evaluation, as they may not possess the information we re-
quire. To mitigate this problem, we defined and applied three inclusion criteria when
selecting the studies from where the scenarios would be extracted.

Internal Validity: a possible threat is related to errors when conducting and document-
ing the results of the evaluation. This may lead to erroneous conclusions, resulting in
misleading answers for the RQs. To mitigate this problem, we clearly defined four
steps for conducting the evaluation. Also, we conducted and published a pilot execu-
tion [Marchezan et al. 2020] to evaluate how the steps performed helped to answer the

RQ.

External Validity: concerning the relevance of our findings to other studies, we estab-
lished a replicable protocol, using as input studies found in a public and well-known
catalog of case studies. Also, we provide all artifacts from the evaluation in an open data
repository @ allowing reproducibility.

Reliability: a possible threat is related to problems with the data dependency caused
by the researchers conducting the evaluation. To mitigate this problem, we defined four

different metrics for the RQs, describing how they may be answered by analyzing the
results. An additional threat is the number of scenarios selected. Despite having only
eight scenarios, we argue that they allowed us properly investigating the flexibility and
limitations. However, we understand that a larger dataset could complement our results.

5. Conclusion

The SPL reengineering process is adopted by organizations that aim to migrate their
legacy software into a technology focusing on systematic reuse. Organizational scenarios
impact the SPL reengineering process as scenario aspects can determine which retrieval
techniques are more suited to them. In this sense, a process customized based on these
aspects may be a satisfactory solution for reducing this impact.

Therefore, we propose a framework called PAXSPL that gives support for users to
plan the SPL reengineering by customizing their feature retrieval processes. Our frame-
work was constructed by considering the SPL reengineering planning activities, limita-
tions of works in the field, and requirements of end-user tools. As the results of our
evaluation pointed out, PAXSPL can be applied in different scenarios considering a va-
riety of scenario variables such as artifacts, techniques, and activities. For future work,
we intend to extend PAXSPL to include additional feature retrieval techniques found in
the literature. In addition, we plan to interview the authors of the eight scenarios used
in the evaluation to collect and analyze their opinion concerning the instantiation of the
scenarios.

References

Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., and Lahire, P. (2013). Extraction
and evolution of architectural variability models in plugin-based systems. Software &
Systems Modeling, 13(4):1367-1394.

Al-Msie’Deen, R., Seriai, D., Huchard, M., Urtado, C., Vauttier, S., and Eyal-Salman,
H. (2012). An approach to recover feature models from object-oriented source code.
Actes de la Journée Lignes de Produits, pages 15-26.

Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P., Pohl, C.,
and Rummler, A. (2008). An exploratory study of information retrieval techniques in
domain analysis. In /2th SPLC, pages 67-76. IEEE.

Assunc¢do, W., Lopez-Herrejon, R., Linsbauer, L., Vergilio, S., and Egyed, A. (2017).
Reengineering legacy applications into software product lines: a systematic mapping.
Empirical Software Engineering, pages 1-45.

Breivold, H. P.,, Larsson, S., and Land, R. (2008). Migrating industrial systems towards
software product lines: Experiences and observations through case studies. In 2008
34th Euromicro Conference SEAA, pages 232-239.

Capilla, R., Gallina, B., Cetina, C., and Favaro, J. (2019). Opportunities for software reuse
in an uncertain world: From past to emerging trends. Journal of Software: Evolution
and Process, 31(8):e2217.

Chen, K., Zhang, W., Zhao, H., and Mei, H. (2005). An approach to constructing fea-
ture models based on requirements clustering. In Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, pages 31-40. IEEE.

Clements, P. and Northrop, L. (2002). Software product lines. Addison-Wesley,.

Eyal-Salman, H., Seriai, D., and Dony, C. (2013). Feature-to-code traceability in a col-
lection of software variants: Combining formal concept analysis and information re-
trieval. In /4th IRI, pages 209-216. IEEE.

John, I. (2010). Using documentation for product line scoping. Software, IEEE, 27(3):42—
47.

John, I. and Eisenbarth, M. (2009). A decade of scoping: A survey. In Proceedings of the
13th SPLC, SPLC 09, pages 31-40.

Kriiger, J., Mahmood, W., and Berger, T. (2020). Promote-pl: A round-trip engineering
process model for adopting and evolving product lines. In 24th ACM Conference on
Systems and Software Product Line: Volume A, SPLC °20, New York, NY, USA. ACM.

Laguna, M. A. and Crespo, Y. (2013). A systematic mapping study on software product
line evolution: From legacy system reengineering to product line refactoring. Science
of Computer Programming, 78(8):1010-1034.

Marchezan, L. (2020). PAXSPL: A generic framework to support the planning of SPL
reengineering. Master’s thesis, Universidade Federal do Pampa, Av. Tiaraju, 810 -
Ibirapuita, Alegrete - RS, 97546-550, Brazil.

Marchezan, L., Carbonell, J. a., Rodrigues, E., Bernardino, M., Basso, F. P., and
Assunc¢do, W. K. G. (2020). Enhancing the feature retrieval process with scoping and
tool support: Paxspl_v2. In Proceedings of the 24th ACM SPLC - Volume B, SPLC °20,
page 29-36, New York, NY, USA. Association for Computing Machinery.

Marchezan, L., Rodrigues, E., Bernardino, M., and Basso, F. P. (2019). PAxSPL: A
feature retrieval process for software product line reengineering. Software: Practice
and Experience, 49(8):1278—-1306.

Martinez, J., Assuncao, W. K. G., and Ziadi, T. (2017). Espla: A catalog of extractive spl
adoption case studies. In Proceedings of the 21st SPLC - Volume B, SPLC ’17, pages
38—41, New York, NY, USA. ACM.

Paskevicius, P., Damasevicius, R., KarCiauskas, E., and Marcinkevicius, R. (2012). Au-
tomatic extraction of features and generation of feature models from java programs.
Information Technology And Control, 41(4):376-384.

Pereira, J. A., Constantino, K., and Figueiredo, E. (2015). A systematic literature review
of software product line management tools. In International Conference on Software
Reuse, pages 73—89. Springer.

Pohl, K., Bockle, G., and van Der Linden, F. (2005). Software product line engineering:
foundations, principles and techniques. Springer Science & Business Media.

Shatnawi, A., Seriai, A., and Sahraoui, H. (2014). Recovering architectural variability
of a family of product variants. In Schaefer, I. and Stamelos, 1., editors, Software
Reuse for Dynamic Systems in the Cloud and Beyond, pages 17-33, Cham. Springer
International Publishing.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering, volume 1. Springer Science & Business
Media.

	Introduction
	Background
	The PAxSPL framework
	Evolution from Past Work
	Customization for Different Scenarios
	PAxSPL Process
	Guidelines and Supporting tool

	Evaluation
	Goal and Research Questions
	Dataset and Execution
	Results and Analysis
	Scenario's Results
	Answering the RQs
	Threats to Validity

	Conclusion

