
RAID: Tool Support for Refactoring-Aware
Code Reviews

Rodrigo Brito1, Marco Tulio Valente1

1Departamento de Ciência da Computação
Universidade Federal do Minas Gerais (UFMG)

Belo Horizonte, MG – Brasil

{britorodrigo,mtov}@dcc.ufmg.br

Abstract. Code review is a key development practice that contributes to improve
software quality and to foster knowledge sharing among developers. However,
code review usually takes time and demands detailed and time-consuming anal-
ysis of textual diffs. Particularly, detecting refactorings during code reviews is
not a trivial task, since they are not explicitly represented in diffs. For example,
a Move Function refactoring is represented by deleted (-) and added lines (+)
of code which can be located in different and distant source code files. To tackle
this problem, we introduce RAID, a refactoring-aware and intelligent diff tool.
Besides proposing an architecture for RAID, we implemented a Chrome browser
plug-in that supports our solution. Then, we conducted a field experiment with
eight professional developers who used RAID for three months. We concluded
that RAID can reduce the cognitive effort required for detecting and reviewing
refactorings in textual diff. Besides documenting refactorings in diffs, RAID re-
duces the number of lines required for reviewing such operations. For example,
the median number of lines to be reviewed decreases from 14.5 to 2 lines in the
case of move refactorings and from 113 to 55 lines in the case of extractions.

Resumo. Revisão de código é uma importante prática no desenvolvimento de
software que contribui para a melhoria de qualidade do código e transferência
de conhecimento. No entanto, revisão de código leva tempo e exige uma análise
detalhada e demorada de diffs textuais. Particularmente, detectar refatorações
durante as revisões não é uma tarefa trivial, uma vez que as refatorações não
são representadas em diffs. Por exemplo, ao mover uma função, o diff é repre-
sentado por linhas adicionadas (+) e linhas removidas (-) em partes que podem
estar localizados em diferentes e distantes arquivos do código fonte. Para solu-
cionar este desafio, nós apresentamos RAID, uma ferramenta de diff inteligente
que identifica atividades de refatoração e instrumenta os diffs textuais. Além de
propor uma arquitetura para o RAID, implementamos um plug-in para o nave-
gador Chrome que suporta nossa solução. Finalmente, avaliamos RAID em um
experimento de campo por três meses, quando oito desenvolvedores profission-
ais usaram nossa ferramenta em quatro projetos Go. Concluímos que RAID
reduz o esforço cognitivo necessário para detectar e revisar atividades de refa-
toração em diffs textuais. Particularmente, RAID também reduz o número de
linhas necessárias para revisar tais operações. Por exemplo, o número médio de
linhas a serem revisadas diminuiu de 14,5 para 2 linhas no caso de refatorações
envolvendo movimentação e de 113 para 55 linhas no caso de extrações.



1. Introduction
Code review is a widely used software engineering practice. Over the years, lightweight
code review practices have emerged and gained popularity, in order to make the pro-
cess more agile. Besides that, modern version control platforms—such as GitHub and
GitLab—are contributing to popularize code reviews by means of pull/merge requests.
However, code review takes time and may introduce delays in the release of new ver-
sions. The reason is that it is a manual process that requires expertise in the codebase and
careful inspection of textual diffs.

In this dissertation, we introduce RAID, a refactoring-aware and intelligent diff
tool. RAID is a tool for instrumenting textual diffs—particularly, the ones provided by
GitHub—with information about refactorings. Typically, refactorings are represented in
textual diffs as a sequence of removed lines in the left (-) and a sequence of added lines in
the right. Therefore, code reviewers must infer by themselves whether this “difference”
represents a refactoring operation, which requires an amount of cognitive effort.

Therefore, our key goal in this master thesis is to alleviate the cognitive effort as-
sociated with code reviews, by automatically detecting refactoring operations included in
pull requests. Besides supporting refactoring detection, the proposed tool seamlessly in-
struments current diff tools with information about refactorings. As a result, reviewers can
easily inspect the changes performed in the refactoring code after the operation. Particu-
larly, RAID relies on RefDiff [Silva et al. 2021], which is a tool that detects refactorings
for Java, C, JavaScript, and Go programming languages. RAID operates with a low run-
time overhead, and it is fully integrated with state-of-the-practice continuous integration
pipelines (GitHub Actions) and browsers (Google Chrome).

2. Methodology
To evaluate RAID, we relied on a field experiment. More specifically, we obtained per-
mission to include the tool in the development workflow of a medium-sized technology
company that develops software for musical products. In this way, two development teams
(with 5 and 3 developers) used the tool during three months.

3. Conclusion
In this work, we presented RAID, a refactoring-aware tool that instruments GitHub diff
with refactoring information. We concluded that RAID can reduce the cognitive effort
required for reviewing refactorings when using textual diffs. In addition, our field experi-
ment showed a reduction in the number of lines required for reviewing such operations. In
the case of move refactorings, the number of lines decreases from 14.5 to 2 lines (median
values); and from 113 to 55 lines in the case of extractions.

RAID is publicly available at GitHub.1

References
Silva, D., da Silva, J. P., Santos, G., Terra, R., and Valente, M. T. (2021). RefDiff 2.0: A

multi-language refactoring detection tool. IEEE Transactions on Software Engineer-
ing, 1(1):1–17.
1https://github.com/rodrigo-brito/refactoring-aware-diff


