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Abstract. Test smells have been proven to deteriorate the quality of the test suite
of a system, to the point where several different tools have been devised with the
objective of detecting or sometimes even fixing these smells. Have been ex-
tensively studied in more recent years, these smells have been cataloged and
researchers have proposed a series of source code transformations capable of
eliminating these smells. Our goal in this paper is to present TESTAXE, a tool
to refactor test smells using the latest features of JUnit 5. We present an empir-
ical assessment of TESTAXE accuracy and highlight its current limitations.

1. Introduction

The design and implementation of a software system might evolve gradually. How-
ever, existing reports [Izurieta and Bieman 2007, Eick et al. 2001] show that during such
evolutionary efforts, wrong design decisions might happen, eventually leading to code
smells and increasing the technical debt of a system. Indeed, the accumulation of bad de-
sign decisions might cause the software’s design to decay [Parnas 1994, Eick et al. 2001,
Izurieta and Bieman 2007, de Silva and Balasubramaniam 2012], reflecting not only on
the application code but also on the testing assets. The impact of code smells in the appli-
cation code has been extensively studied in the last 20 years (e.g., [Sjoberg et al. 2013]),
though recent research has specifically investigated the negative impact of test smells—
not only on the comprehension and maintenance of test suites [Bavota et al. 2015],
but also on the quality of the testing and application code [Spadini et al. 2018,
Tufano et al. 2016].

Existing tools have been designed to identify [Palomba et al. 2018,
Peruma et al. 2020] and refactor test smells [Lambiase et al. 2020, Santana et al. 2020,
Pizzini 2022]. For instance, the ORACLEPOLISH tool identifies the smells Brittle
Assertions and Unused Input in JUnit test cases [Huo and Clause 2014]; while the
TASTE tool [Palomba et al. 2018] leverages information retrieval techniques on textual
and structural features of test cases to identify test smells. More recently, Lambiase et
al. presented DARTS (Detection And Refactoring of Test Smells), an IntelliJ plugin
for detecting and refactoring the test smells General Fixture, Eager Test, and Lack of
Cohesion of Test Methods [Lambiase et al. 2020]. Examples of tools able to detect a more
comprehensive number of test smells include (a) TSDETECTOR [Peruma et al. 2020] and
JNOSE [Virginio et al. 2020]. These tools use pattern matching on the abstract-syntax
trees of test cases and identify 19 and 21 types of test smells, respectively.



Aljedaani et al. present a systematic mapping study on the field of test
smell detection [Aljedaani et al. 2021], reporting a total of 22 tools available in
the literature. Differently, there are not so many tools targeting test smell refac-
toring. As already mentioned, the DARTS tool identifies and refactors three
types of test smells [Lambiase et al. 2020]; while the research tool of Santana et
al. [Santana et al. 2020] refactor the test smells Assertion Roulette and Duplicate Assert.
Although these tools show evidence of the importance of automatic JUnit test smell refac-
toring, they do not consider the recent catalog of refactoring recommendations that benefit
from the new JUnit 5 features [Soares et al. 2022].

The goal of this paper is to present the design and evaluation of TESTAXE, a
tool that (a) supports developers in the task of migrating JUnit test cases to use the new
features of the JUnit 5 test framework and (b) identifies and refactors five test smells
using the new features of JUnit 5. We present some background in the next section.
Section 3 presents the design and implementation of TESTAXE. We present details of an
empirical assessment of TESTAXE in Section 4. Finally, in Section 5 we present some
final remarks. TESTAXE is available at https://github.com/PAMunb/JUnit5Migration/

2. Background and related work

According to Spadini et al. [Spadini et al. 2018], “test smells are sub-optimal design
choices in the implementation of test code” and several studies bring evidence that
test smells might compromise not only the quality of the test suites [Bavota et al. 2015,
Virginio et al. 2019] but also the general quality of software systems [Tufano et al. 2016,
Spadini et al. 2018, Kim et al. 2021, Wu et al. 2022]. For instance, Spadini et al. mined
the source code history of ten open source projects and observed a correlation between
the smells Indirect Testing and Eager Testing and the error-proneness of production code
[Spadini et al. 2018]. Kim et al. also report that test smells make the code more error-
prone [Kim et al. 2021].

Garousi and Kiiciik present a comprehensive survey on test smells, contributing
with a taxonomy and a catalog of test smells [Garousi and Kiiciik 2018]. Their taxonomy
groups test smells into six categories, including Test Execution, Test Logic, and Test De-
pendencies. Listing 1 shows an example of the Conditional Test Logic smell, which might
lead the test execution to not run specific assertions [Soares et al. 2022]. Since test smells
compromise the quality of the systems, it is fundamental to provide guidelines, idioms,
and patterns that might help developers to avoid taking bad design decisions as well as
design and implement tools for detecting and removing test smells [Palomba et al. 2018,
Peruma et al. 2020, Lambiase et al. 2020, Santana et al. 2020, Pizzini 2022].

The work of Soares et al. has shown promising results of using new features
from JUnit 5 to remove test smells [Soares et al. 2022]. More specifically, their paper
describes seven features of JUnit 5 that can aid developers to remove 13 test smells, in-
cluding Conditional Test Logic and Assertion Roulette [Soares et al. 2022] smells. The
authors also define new refactorings in terms of templates, which we use as the basis
for our TESTAXE implementation. Similarly to previous works [Lambiase et al. 2020,
Santana et al. 2020], we use pattern matching on abstract syntax trees to implement TES-
TA XE—the first tool that implements four (of seven) refactorings from the Soares et al.
catalog [Soares et al. 2022]
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@Test
void first_test() {
if (lastContainerId == null) {
lastContainerId = genericContainer.getContainerId();
} else {
assertNotEquals(lastContainerld,
genericContainer.getContainerId());

Listing 1. Example of the Conditional Test Logic smell [Soares et al. 2022]

3. TestAXE

TESTAXE was devised as a tool to automatically detect and remove code smells present
in Java software tests, especially those software that uses the JUnit 5 test framework
without taking advantage of its newest features. TESTAXE is composed of two sepa-
rate parts: a Python CLI application to prepare the environment, and a program trans-
formation tool (hereafter transformer)—implemented in the Rascal meta-programming
language [Klint et al. 2009]- that is responsible for transforming the test code.

3.1. The CLI Component

TESTAXE makes available a CLI application with a thin Python “shell” script to perform
a few basic steps before calling the actual Rascal implementation—that transforms Java
test code. This Python script recognizes two CLI options: the path of the repository to
be transformed, and the number of maximum files to which the transformations will be
applied. The repository is assumed to use the git versioning system, as the application
creates, if it does not already exist, a junit5-migration branch and checks out to it.
After checking out the new branch, the application finally calls the Rascal transformer
meta-program implementation. As the transformation finishes, the CLI gets the modified
file list from git and applies an external code formatting tool from Google.!

3.2. The Rascal Transformer Component

The second and main component of TESTAXE is a meta-program that leverages Ras-
cal’s powerful parse tree generator and its traversal functions to detect and refactor test
smells, especially a set of smells whose refactor was proposed on [Soares et al. 2022].
These refactoring proposals are based mainly on new JUnit 5 features, such as new test
annotations, assertion methods, and helper methods. This component also implements
transformations for helping developers to migrate from legacy JUnit code to adopt new
features of JUnit 5.

The transformer collects the files of interest by traversing the directory structure
of the repository recursively. It then parses the file contents generating parse trees and
executes a pipeline of transformations. Transformations are functions that comprise two
steps: (a) a verifying step that checks preconditions and (b) a transformation step that
refactors a test smell. As the outermost grammatical element is a CompilationUnit,
transformations are essentially functions that take in a CompilationUnit as an argument

Thttps://github.com/google/google-java-format
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and also return a CompilationUnit. As the transformer applies the pipeline functions, it
collects metrics to determine which and how many transformations effectively modified
a test case.

3.3. The Transformation Pipeline

As mentioned before, the transformation pipeline is comprised of a collection of func-
tions. Indeed, we assign names to these functions in a hash map, so that we can collect
metrics during the pipeline execution. The transformation pipeline is applied by iterating
over an associative mapping of names and functions, while also aggregating a map of
names to integers, representing the number of times a transformation has been applied.

As transformations may interfere with each other, the order in which the pipeline
is assembled may yield different results. For instance, two of the transformations that
were implemented deals with a sequence of assertion statements grouped together. These
are the AssertAll and ParameterizedTest transformations, which fix, respectively, the
Assertion Roulette and the Test Code Duplication smells.

Supposing there is a Calculator class with a diff static method, which returns
the difference of the two numbers received as parameters. A test case for this method
could look like Listing 2. As there is a collection of assertions being made and the intent
of the test is that all of them be executed, if the first one fails, the two last would not even
run, making it difficult to test the class as intended.

@Test

public void testCalculatorDiff() {
assertEquals(Calculator.diff(5, 1), 4);
assertEquals(Calculator.diff (10, 3), 7);
assertEquals(Calculator.diff(3, 6), -3);

}

Listing 2. A test method for a calculator class.

One possible solution would be to apply the AssertAll transformation. JUnit 5
offers a method that receives multiple lambda functions and runs all of them, disregarding
individual assertion failures while the test method is running. After it finishes, it provides
an adequate report on failed assertions, if any. Applying this transformation to Listing 2
results in the code in Listing 3.

@Test
public void testCalculatorDiff() {
Assert.assertAll(
() -> assertEquals(Calculator.diff(5, 1), 4),
() -> assertEquals(Calculator.diff(10, 3), 7),
() -> assertEquals(Calculator.diff(3, 6), -3)

Listing 3. A test method for a calculator class refactored with the AssertAll
transformation.

Nonetheless, there is another, arguably more adequate, solution transformation
for this case: the ParameterizedTest refactoring. A parameterized test receives the test
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data as parameters, whose values can come from different sources. It is the most ade-
quate refactoring considering repeated assertions of idempotent methods using different
argument values. Applying this refactoring to the code in Listing 2 results in the code in
Listing 4.

@ParameterizedTest
@CsvSource({ "5, 1, 4", "10, 3, 7", "3, 6, -3" })
public void testCalculatorDiff(int a, int b, int c)
{

assertEquals(Calculator.diff(a, b), c);
}

Listing 4. A test method for a calculator class refactored with the
ParmeterizedTest transformation.

With listings 4 and 3, it becomes clear that both transformations are mutually
exclusive, and therefore the order of the transformations in the pipeline is decisive for
the end result. Table 1 lists the current set of TESTAXE transformations, as well as the
execution order of the pipeline.

[ Order | Smell | Transformation | Description

T1 | Exception Handling ExpectedException Transforms tests with exception parameters to
assertThrows assertions

T2 |- ExpectedTimeout Transforms  tests with  timeout parameters to
assertTimeout assertions

T3 | Assertion Roulette AssertAll Groups sequential assertions inside an assertAll call,
guaranteeing every assertion will be verified

T4 Conditional Test ConditionalAssertion | transforms tests that run their assertions conditionally, with

an if statement wrapping their body, to tests that are condi-
tionally run, by using the @EnableIf ("methodName") anno-
tation

T5 | Test Code Duplication | RepeatedTest Transforms tests that are wrapped within a for loop, to tests
that have the @RepeatedTest (iterationCount) annotation
T6 | Mystery Guest TempDir Adds a test parameter annotated by @TempDir, which is re-
solved into a temporary directory, to tests that use tempo-
rary files

T7 - SimpleAnnotations Migrates JUnit 4 annotations, including @Before,
@BeforeClass..., into their JUnit 5 counterparts, as
well as adding the necessary imports for the other transfor-
mations

Table 1. Set of TESTAXE transformations

These transformations are implemented in a modular fashion, each within its own
module. In total, TESTAXE is comprised of 24 files, of which 22 are Rascal source code
files, each one is a module, one is the Python driver, and the last one is the google source
code formatter. TESTAXE has over 3750 lines of code.

3.4. How transformation works

Transformations are functions that receive a CompilationUnit and return a Compilatio-
nUnit that may or not have been modified. A CompilationUnit is a syntax definition
reflecting the abstract syntax of a Java source code, which involve many structures (e.g.,
package declaration, imports, class definitions). These structures are traversed in order
to get to the test method declarations, so detecting and fixing smells is possible. The
structures are traversed from CompilationUnit to MethodDeclaration.
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This is the underlying path that is traversed when it is necessary to modify or
extract data from test declarations, but Rascal enables skipping several intermediate steps
in this path through its visit expression. In order to, from a root node, modify or extract
information from another node nested in its hierarchy, one can use the visit expression.
For instance, Listing 5 shows an example of a method that searches for the first method
declaration within a class declaration, returning a maybe structure that may or not contain
this method declaration.

public Maybe[MethodDeclaration] getFirstMethod(ClassDeclaration classDeclaration) {
top-down visit(classDeclaration) {
case MethodDeclaration methodDeclaration: return just(methodDeclaration);
}
return nothing();
}

Listing 5. Visit expression to access deep nested values inside a node.

Listing 5 shows how, despite how nested a node may be in the parse tree, accessing
it is a concise task by using the Rascal visit expression and pattern matching features.
When a node matches the pattern, there are two different kinds of executions that may
take place, depending on how the case is written: a direct replacement of the matched
node with the => operator, or arbitrary code execution, with the ":" operator, which may
resolve into a replacement as well (when using the insert statement). Both of these

approaches appear on TESTAXE code.

Listing 6 shows a simplified version of the SimpleAnnotation transformation that
helps developers to migrate test code to JUnit 5. This transformation uses the first kind of
pattern matching, meaning that there is the replacement of the matched node by another
one of the same type. It is also common that a more complex control flow may be neces-
sary for some transformations, though. For instance, the TempDir transformation requires
two changes in the test code: the replacement of all of the createTempFile method invo-
cations directly from the File class, to a File instance received as a method parameter on
the test method and the addition of a parameter to the test method with this instance as its
value. For this, a boolean variable may be used to dictate whether File.createTempFile
method invocations were found so that the addition of the test parameter may be done
later. Listing 7 shows the segment of the code that does exactly this.

Another important aspect is that the pattern matching can be done in the AST form
or in the concrete syntax form, which is extensively used by TESTAXE. The concrete
syntax form allows for the extraction of node elements within a form that resembles the
actual parsed source and can be seen throughout all of the listings.

public CompilationUnit executeSimpleAnnotationsTransformation(CompilationUnit unit) {
if(verifySimpleAnnotations(unit)) {
unit = top-down visit(unit) {
case (MethodModifier) @BeforeClass™ => (MethodModifier) @BeforeAll"
case (MethodModifier) @Before™ => (MethodModifier) @BeforeEach”
}
}
return unit;

}

Listing 6. Direct replacement example in the SimpleAnnotation transformation



private MethodDeclaration replaceTempFilesWithTempDir(MethodDeclaration method) {
bool tempDirUsed = false;
method = top-down visit(method) {
case (MethodInvocation) “File.createTempFile(<ArgumentList args>)": {
tempDirUsed = true;
insert((MethodInvocation) ~tempDir.createTempFile(<ArgumentList args>));
}
}
if(tempDirUsed)
method = addMethodParameter(method, (FormalParameter) ~@TempDir File tempDir™);
return method;
}

Listing 7. Arbitrary code execution in the pattern match in the TempDir
transformation.

4. Empirical Assessment

The goal of this empirical study is to assess the accuracy of TESTAXE transformations.
Overall, we pose the following research questions:
1. Out of all the transformations that were applied, how often were they correct?

2. Were any of the transformations applied when they should not?
3. Out of all the refactoring opportunities, how often were they detected?

These questions can be answered by two metrics that were measured considering
the output files TESTAXE produce: Precision, which measures how correctly the trans-
formations were applied, and Recall, which measures how frequently were the refactoring
opportunities taken. The computation of these metrics is as follows:

TP TP
Precision = ————; l=—""-__
recision TP+FP’Reca TP+ EN
In which T'P stands for true positives, F'P for false positives, and F'N for false
negatives. For an overall performance, we calculate the F1-Score (F}), which is computed
as follows:

Precision x Recall

=2
! Precision + Recall
We apply the TESTAXE transformation over a curated dataset of 38 JUnit test

cases. These test cases come from a study based on pull requests from Soares et al.
[Soares et al. 2022]. 2

4.1. Results

Table 2 shows the results of our empirical study. Note that our results outline a careful,
in the sense of not taking any risks, but not a complete set of transformations. Since
Precision is 1, it means that there were no false positive cases, but the downside of
this carefulness appears when looking at the measured value of Recall, showing room
for improvements in smell detection. That is especially true for the ParameterizedTest
transformation, which was frequently present on the false negative transformations, while
not appearing once on the true positive.

Zhttps://github.com/easy-software-ufal/refactoring-test-smells-with-junit5.
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‘ Smell ‘ Transformation ‘ TP ‘ FP ‘ FN ‘ Precision ‘ Recall ‘ F; ‘

Assertion Roulette AssertAll 97 |0 |41 |1 0.70 | 0.83
Conditional Test Logic | ConditionalAssertion | 1 0 |2 1 0.34 0.5
Duplicate Assert ParameterizedTest 0 0 |21 |O 0 0
Mystery Guest TempDir 1 0 |0 1 1 1
Test Code Duplication | RepeatedTest 4 0 |0 1 1 1
Overall Result - 103 (0 |64 |1 0.62 0.76

Table 2. Smell/Transformations metrics

4.2. Limitations

The detection of smells can be rather naive. For instance, the detection of the Conditional
Test Logic smell is a simple verification of a method body wrapped inside an if. Even
if the assertions are all inside if statements, as shown in listing 8, the refactoring won’t
apply if there are any statements outside the if statement.

@Test
public void conditionalTestWithPrecedingStatements() {
someMethod();
if(true) {
Assert.assertEquals("something", "something");
}
}

Listing 8. Undetected conditional test logic due to method invocations before the
if statement

That is also true for the Test Code Duplication smell, if there are any statements
outside the for loop, the smell is not detected and therefore, the refactoring is not applied.
For this same smell, for test correctness sake, the transformation is not applied if there are
any method calls, or even values that are not literals (integers, booleans, strings, ...).
Listing 9 shows an example of smell that would not be detected.

@Test

public void testCodeDuplicationWithMethodInvocationAssertion() {
Assert.assertEquals(1l, 1);
Assert.assertEquals(multiply(5, -1), -5);
Assert.assertEquals (10, 10);

}

Listing 9. Unconsidered Test Code Duplication smell due to method invocation
inside the assertions

5. Final Remarks and Future Work

This paper details the design and implementation of TESTAXE, a tool that refactors
legacy JUnit code smells using the new features of JUnit 5. Currently, TESTA XE supports
five (of seven) refactorings that Soares at al. detail in their paper [Soares et al. 2022]. We
empirically evaluated TESTAXE and found that it presents a reasonable accuracy (/) of
0.76), though there are blind spots that lead TESTAXE to miss some opportunities for
removing test smells.



As future work, we intend to complement this research in three main directions.
First, we want to improve the accuracy of TESTAXE, so that it could deal with the corner
cases that are harming its overall performance on fixing test smells. Second, we want to
implement the remaining transformations detailed in [Soares et al. 2022]. Finally, we aim
at conducting a case study with one of our industry patterns.

Declaration

Most of this work has been conducted by the first author of this paper (Estevan Alexander
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