A grounded theory of organizational structures for
development and infrastructure professionals in
software-producing organizations

Leonardo Leite', Fabio Kon', Paulo Meirelles'

'Department of Computer Science — Institute of Mathematics and Statistics (IME)
— University of Sao Paulo (USP), Sao Paulo, Brazil

{leofl, kon, paulormm}@ime .usp.br

Abstract. DevOps and continuous delivery have significantly impacted the organiza-
tional structures of development and infrastructure groups in software-producing orga-
nizations. Our research revealed the different options adopted by the software industry
to organize such groups, unveiling why different organizations adopt distinct structures
and how organizations handle the drawbacks of each structure. By interviewing 68
carefully-selected, skilled IT professionals and analyzing these conversations through a
Grounded Theory process, we identified theoretical assertions (conditions, causes, rea-
sons to avoid, consequences, and contingencies) related to each discovered structure
(segregated departments, collaborating departments, API-mediated departments, and
single department). We, then, offer a theory to explain organizational structures for
development and infrastructure professionals. This theory supports practitioners and
researchers in comprehending and discussing the DevOps phenomenon and its related
issues, it also provides valuable input to practitioners’ decision-making.

Resumo. DevOps e entrega continua impactaram significativamente as estruturas or-
ganizacionais de grupos de desenvolvimento e infraestrutura em organizacdes produ-
toras de software. Nossa pesquisa revelou as diferentes opgcoes adotadas pela indiistria
de software para organizar tais grupos, revelando porque diferentes organizagées ado-
tam estruturas distintas e como as organizacoes lidam com as desvantagens de cada
estrutura. Ao entrevistar 68 qualificados profissionais de TI, que foram cuidadosa-
mente selecionados, e analisar essas conversas por meio de um processo de Grounded
Theory, identificamos afirmagées tedricas (condigcdes, causas, razdes para evitar, con-
sequéncias e contingéncias) relacionadas a cada estrutura descoberta (departamentos
segregados, departamentos que colaboram, departamentos mediados por API e depar-
tamentos tinicos). Oferecemos, entdo, uma teoria para explicar essas estruturas orga-
nizacionais para profissionais de desenvolvimento e infraestrutura. Essa teoria auxilia
profissionais da indistria e pesquisadores na compreensdo e discussdo do fenomeno
DevOps e suas questoes relacionadas; ele também fornece informagées valiosas para
a tomada de decisdes dos profissionais da indistria.

Key words: DevOps, Grounded Theory, empirical software engineering, organizational
structures, continuous delivery, software teams



1. Introduction

Here, we introduce our research by presenting its problem outline, research questions,
and methodological approach.

1.1. Problem outline and research questions

To remain competitive, software-producing corporations seek to speed up their release
processes. Organizations adopt continuous delivery practices in their quest to accelerate
time-to-market and improve customer satisfaction. However, continuous delivery also
comes with challenges, including profound impacts on various aspects of software engi-
neering. With an automated deployment pipeline, one can, for example, question the role
of an engineer responsible solely for new deployments. Since release activities involve
many divisions of a company (e.g., development, operations, and business), adopting
continuous delivery impacts an organization’s structure. Therefore, organizations moving
toward continuous delivery have not only to upgrade their software tooling arsenal but
also to find ways to better shape and integrate their I'T teams.

Given such recent transformations, there is a need for a better understanding
of the organizational structures the software industry adopts for development and in-
frastructure employees. By organizational structure, we mean the differentiation (di-
vision of labor) and integration (interaction) [Oliveira 2012] of operational activities
(application deployment, infrastructure setup, and service operation in run-time) be-
tween development and infrastructure groups. Empirical software engineering stud-
ies have focused on identifying the different organizational structures adopted in the
industry to arrange development and infrastructure professionals [Nybom et al. 2016,
Shahin et al. 2017, Fernandez et al. 2021, Macarthy and Bass 2020]. However, the liter-
ature available before our work did not reveal why different companies adopt different
structures or how companies deal with the drawbacks of each structure.

This gap in the literature was inconvenient due to at least two crucial reasons: (1)
organizations wishing to adopt continuous delivery can be disoriented regarding how to
design their human resources structure toward this goal; (2) once a structure is chosen,
the organization might be unaware of the consequences of this choice. The lack of a
consolidated view of how the industry handles the outlined problem was also unfortunate.
Decision-makers in software companies are highly interested in knowing “what other
companies are doing” and “why are they doing it” to support their decisions.

In this thesis, we offer a theory to explain organizational structures for develop-
ment and infrastructure professionals. We describe, in a taxonomy format, the struc-
tures currently adopted by software-producing organizations. Moreover, we explain why
different organizations have different structures and how companies handle each struc-
ture’s drawbacks. In other words, we present conditions, causes, reasons to avoid, conse-
quences, and contingencies related to each structure.

In this way, this thesis answers the following research questions:
RQ1: What are the organizational structures adopted by software-producing organiza-

tions to structure operational activities (application deployment, infrastructure
setup, and service operation in run-time) among development and infrastructure



groups? (RQ1.1) What are the properties of each of these organizational struc-
tures? (RQ1.2) Are some organizational structures more conducive to continuous
delivery than others?

RQ2: Why do different software organizations adopt different organizational structures
regarding development and infrastructure groups? (RQ2.1) How do organizations
handle the drawbacks of each organizational structure?

We investigated these questions in the context of software-producing organiza-
tions responsible for deploying the software they produce. For brevity, henceforward, we
refer to them simply as “organizations” or “‘companies.”

DevOps and continuous delivery are contextual factors that have impacted the
software industry and are, therefore, part of the motivation for our research. Nevertheless,
we clarify that the definitions and procedures of our research are not dependent on the
notion of DevOps. We sought to understand the software production landscape regardless
of whether companies claim to have adopted DevOps or not.

1.2. Research approach

Our research questions were not the fruit of inspiration solely. Our initial interest in this
research endeavor was the DevOps topic. Thus, initially, we conducted a comprehensive
literature review on DevOps. We wanted mainly to understand the DevOps field, with
its concepts and challenges, and find research opportunities before working on an original
contribution. Such a literature review employed some techniques of Systematic Literature
Reviews (SLR) [Kitchenham and Charters 2007].

In particular, one of the DevOps challenges found in our literature review con-
cerned the challenge of splitting roles across teams in the DevOps paradigm. To
elaborate a taxonomy to describe the existing structures (RQ1 and RQ1.1), we con-
ducted semi-structured interviews with 37 IT professionals, each one belonging to a
different organization. We analyzed these interviews by following Grounded The-
ory [Glaser and Strauss 1999], a methodology well-suited for generating theories. At the
same time, at this point, we were eager to assess if a given structure could be somehow
“better” than another. The dimension chosen for comparison was the delivery perfor-
mance [Forsgren, N. et al. 2020] (RQ1.2).

After having these preliminary results, it was clear to us that there are distinct
organizational structures in the industry used to organize development and infrastructure
professionals. This situation led us to formulate RQ2: would there be legitimate reasons
for different organizations to adopt different structures? Why do not all organizations
adopt the “best” structure? Our intuition was that there was no “best” structure but differ-
ent structures that were more suitable for different contexts. In this case, probably each
structure would have its drawbacks. And if so, how would organizations handle such
drawbacks (RQ2.1)? The search for such explanations also followed a Grounded Theory
process.

To tackle RQ2 and RQ2.1, we conducted semi-structured interviews with 31 care-
fully selected IT professionals working in 25 different companies, summing up 68 semi-
structured interviews throughout our research. The explanations we offer about the struc-
tures are provided in the format of theoretical assertions: conditions, causes, reasons to



avoid, consequences, and contingencies related to each discovered structure. This format
corresponds to one of the theoretical coding families provided by the Grounded Theory
methodology [Saldafia 2015]. This phase also had an additional goal: to interact with
practitioners to somehow assess our taxonomy and improve it when necessary. During
this process, we evolved the taxonomy by adding, removing, and renaming its high-level
elements.

2. Results

Now, we highlight the significant results of our research effort, first talking about our
survey of DevOps concepts and challenges, and after describing our original contribu-
tion, our grounded theory of organizational structures for development and infrastructure
professionals in software-producing organizations.

2.1. Our literature review on DevOps concepts and challenges

Seeking to understand DevOps, we initiated our research at the beginning of 2018 by
conducting a literature review searching for papers with the keyword “DevOps”. In this
review, we thoroughly examined 50 scientific papers, which were carefully selected after
we initially found almost 200 articles somehow related to DevOps. By analyzing these
articles, we devised conceptual maps organizing DevOps concepts into four categories:
process, people, delivery, and runtime. Figure 1 depicts the overall conceptual map; each
quadrant of this map is unfolded in a broad map (these four maps are available in the
thesis).

Engineering : Management
perspective ' perspective
'

Runtime People

Delivery : Process

Figure 1. DevOps overall conceptual map

As part of our review, we also linked the detected concepts to the engineering’s
and management’s perspectives; presented DevOps tools, classifying them and associ-
ating them to DevOps concepts; listed significant DevOps implications for engineers,
managers, and researchers; and, finally, uncovered four fundamental DevOps challenges:

1. How to re-design systems toward continuous delivery, especially considering the
relation between DevOps practices and microservices architecture.

2. How to organize the relations between development and infrastructure profession-
als to adopt DevOps, especially considering that mutual support between devs and
ops is a very different thing from cross-functional teams.

3. How to assess the quality of DevOps practices in organizations, considering sur-
vey and system data and the pitfalls of any metric when used to promote or punish
professionals.



4. How to qualify engineers for the DevOps practice, considering the laborious en-
deavor of professors preparing practical DevOps classes and evaluating students’
assignments.

We selected the second listed challenge as our guide for this doctoral research.
Based on our experience in Software Engineering and research, we considered the second
challenge to be more manageable from an academic perspective, being more a sociologi-
cal inquiry than an engineering endeavor.

2.2. Our theory on the organization of development and infrastructure
professionals

Based on the careful analysis of the conducted interviews, we elaborated a theory describ-
ing the organizational structures used by the industry in the real world regarding how the
work of developers and infrastructure engineers can be coordinated in the pursuit of con-
tinuous delivery. Such a theory encompasses a taxonomy describing different approaches
for organizing development and infrastructure professionals (Figure 2) and attached theo-
retical assertions about each structure (conditions, causes, reasons to avoid, consequences,
and contingencies). Some of the structures of our taxonomy have supplementary proper-
ties, which are optional structures. Now we briefly present these structures, their supple-
mentary properties, and the conceived theoretical assertions.

consulnng team coordination
deploymenr plpelme committee

Segregared dev & infra Collaborating dev & infra APl-mediated dev & infra Single dev/infra
eparfments deparfments departments eparfment

i /

developmeﬁr p|Iaborarors

dedicated infrastructure
professionals
velopers with
inﬁa ba% %round
and attribUtions

lightweight infra effort

Infra eogle occasmngll& embedded
Bro uct-centered dev feams

-
with a platform
supplementary can qualify - supp\ememary can qualify sfructures supplementary
‘ property(ies) > | Organizational structure property(ies) qualified as > property(ies)

Figure 2. A high-level view of our taxonomy

loud facad
wirhcsopuecigl?zaedeAPl
custom platform

in-house- admlr]lsrered
open-source platform

2.2.1. Segregated departments

Segregated, or siloed, departments is the “pre-DevOps” structure existing in large orga-
nizations, presenting limited collaboration among departments and barriers to continuous



delivery. This structure is considered to be the problem that DevOps came to solve. Now
we list our theoretical assertions about this structure.

Consequences of segregated departments

* Devs lack autonomy and depend on ops
* Low delivery performance (queues and delays)
* Friction and blaming games between devs and infra

2.2.2. Collaborating departments

This structure focuses on collaboration among developers and the infrastructure team.
There is a culture of collaboration and communication among departments, which work
in an aligned way. Non-functional requirements responsibilities, for example, are shared
among developers and the infrastructure team. The supplementary properties and the
theoretical assertions related to this structure are the following.

Supplementary properties of collaborating departments

Infra people as development collaborators: infrastructure engineers have ad-
vanced coding skills and contribute to the application code-base to improve the non-
functional properties of the application.

Infra people occasionally embedded in product-centered dev teams: sometimes,
collaboration occurs with an infrastructure professional spending some time in tight col-
laboration with a development team, especially at the beginning of a new project.

Conditions for collaborating departments

* Enough infra people to align with dev teams
» Top management support

Causes of collaborating departments

* In a non-large company / with few products, it is easier to be collaborative
* Trying to avoid the delivery bottleneck
* Bottom-up initiative with later top-management support

Consequences of collaborating departments

* Growing interaction inter-areas (e.g., knowledge sharing)

* Precarious collaboration (ops overloaded)
Discomfort/frustration/friction/inefficiency with blurred responsibilities (people
don’t know what to do or what to expect from others)

Waiting (hand-offs), infra still a bottleneck

* Automation supports collaboration

Contingencies for collaborating departments

* Giving more autonomy to devs (in staging or even production)



2.2.3. Single department

A single department takes responsibility both for software development and infrastructure
management. It is more aligned with the Amazon motto “You built it, you run it,” giving
freedom to the team along with a great deal of responsibility. In particular, two chal-
lenges for this structure are enforcing corporate standards and guaranteeing every team
has members with the necessary skills.

Supplementary properties of a single department

Dedicated infrastructure professionals: the team has at least one infrastructure
specialist. It may be the case that the department has an infrastructure team dedicated to
a group of developers. In this case, the difference between collaborating departments is
the common hierarchy (same manager) for both development and infrastructure people.

Developers with infra background and attributions: the team has at least one de-
veloper with advanced infrastructure knowledge.

Lightweight infra effort: there is no need for advanced knowledge in infrastruc-
ture.



Conditions for a single department

* Enough ops for each dev team (associated with “dedicated infrastructure profes-
sionals”)

Causes of a single department

* Startup scenario (small, young, weak infra scalability requirements, business fo-
cus, use of cloud services to limit costs)

* Cloud services decrease the need for infra & ops staff

* Delivery velocity, agility, critical project

Avoidance reasons for a single department

* Not suitable for applying corporate governance standards
* More costs: duplication of infra work among teams, high salaries for infra profes-
sionals, underused infra professionals

Consequences of a single department

* No [infra] defaults across teams: freedom, but possibly leading to duplication of
efforts and high maintenance costs

Contingencies for a single department

» Improve infra skills in-house, including through tech talks (associated with “de-
velopers with infra background and attributions™)

2.2.4. API-mediated departments

In this case, there is an infrastructure team (also called the platform team), and it provides
highly automated infrastructure services (‘“the platform”) abstracting the infrastructure to
empower product teams. The existence of a delivery platform enables the product team to
operate its own business services in production and minimizes the need for infrastructure
specialists within the product team.

Supplementary properties of API-mediated departments

Cloud fagade with specialized API: the company provides a platform consuming
a public cloud (e.g., AWS) in a transparent way to developers.

In-house administered open-source platform: the organization manages an open-
source platform, such as Rancher.

Custom platform: the organization builds its own platform due to the specific
needs of the organization.

Conditions for API-mediated departments

* Medium to large-sized company

* Top-down initiatives/sponsorship

* Upfront investment

» Requires coding skills from infra people



Causes of API-mediated departments

A delivery bottleneck in infra management

Compatible with existing rigid structures (low impact on organogram) / Only a
few people needed to form a platform team

Fosters continuous delivery
A hero or visionary (hero culture)
Emerged as best solution; other initiatives not so fruitful

Multiple products / multiple dev teams / multiple clients (requires high delivery
performance)

Consequences of API-mediated departments

Interaction (devs vs. platform team) to support devs, make things work, and de-
mand new capabilities from the platform

The platform provides common mechanisms (e.g., scaling, billing, observability,
monitoring)

Promotes continuous delivery, agility, and faster changes

Devs responsible for infra architecture / concerns (e.g., NFR)

The platform team provides consulting and documentation to devs

Adding devs does not require adding [proportionally] more infra people
Eliminated the previous bottleneck

Small platform team (excellence center)

High costs when using public clouds

Devs skills are too focused on corporate needs, lacking base infra knowledge (bad
for devs themselves, not for the company)

The cost of managing the platform (even using open-source software) is high
Risk: the platform is magic to devs; neglect quality because they trust too much
in the platform, any problem they blame the platform and do not know what to do,
even for simple problems or when the problem is in the application itself

Devs possibly unable to understand the infra or to contribute to the platform

Contingencies for API-mediated departments

Decide how much devs must be exposed to the infra internals (some places more,
some places less)

2.2.5. Other supplementary properties

Enabler team: provides consulting and tools for product teams but does not own any
service or infrastructure in the production environment. Another type of enabler team is
a committee to coordinate the work of development and infrastructure groups.

With a platform: the organization possesses a platform but does not follow the

patterns of human interaction and collaboration prescribed by API-mediated departments.



3. Conclusions

Our first contribution is the outline of DevOps concepts and challenges based on the
literature. After, this doctoral thesis originally contributes to the area by presenting a
systematically-derived theory of organizational structures, based on recent field observa-
tions and employing a well-accepted and systematic methodology. We describe in detail
the structures currently adopted by the software industry to organize development and
infrastructure professionals. In particular, it brings the following key benefits: (i) it helps
practitioners to differentiate collaborating departments from a single department, which
was traditionally blended under the term DevOps, and (ii) it highlights the API-mediated
departments as a promising alternative — our taxonomy was the first empirically derived
one to present such a structure. Therefore, it is also valuable that we provide empirical
evidence that API-mediated departments lead to better delivery performance results.

Another significant contribution is providing an explanatory dimension for each
structure presented in our taxonomy. We explicitly associated theoretical assertions with
each structure. In this way, practitioners can understand why different organizations adopt
different structures. They can also learn how organizations handle the drawbacks of each
structure — or, at least, be aware of such drawbacks. Other researchers presenting similar
taxonomies did not attribute such a level of explanation to their structures.

We also add as a secondary and methodological contribution the way we quantified
theoretical saturation (the criteria of Grounded Theory to stop data collecting), providing
more robust evidence about the saturation than is usual for software engineering studies.
We hope our work will be an example in this aspect.

Importantly, the thesis also outlines the implications for multiple stakeholders.
By increasing the awareness of organizational structures in the community, practitioners
can make more informed decisions on structure selection and drawback handling. More-
over, we hope our theory can lead scholars to a deeper comprehension of the software
production phenomenon so they can update software engineering classes and educational
material considering the reality of the industry abstracted under our theory.

Our work has attracted the attention of practitioners and scholars. We already
talked about our research in practitioners’ podcasts and public and in-house events; the
most notorious event was The Developer’s Conference (TDC), in which we talked about
platform teams in 2020 and 2022. We also lectured about our research and taught about
DevOps in several educational institutions, such as the Paula Souza Center (Etec), the
University of Sao Paulo (USP), the Federal University of Bahia (UFBA), and the Sci-
ence Foundation Ireland Research Centre for Software (Lero). Besides featuring reputed
Brazilian researchers in the DevOps field, the examining committee of this thesis also
had the honor to count on international researchers from Spain and the USA. Our re-
search group could then build a partnership with Spanish researchers working on simi-
lar projects [Fernandez et al. 2021]; such an international partnership, also involving an
author of the notorious Teams Topologies book [Skelton and Pais 2019], has already re-
sulted in a submitted paper about DevOps taxonomies [Alves et al. 2023].

Finally, about science communication, to provide an accessible reference for prac-
titioners to follow, we keep a blog in which we report the results of our research!. In the

"https://www.ime.usp.br/~leofl/devops/



same expectation to amplify our impact in the practitioners’ communities, we are now
working on adapting the theses to the book format. We are writing this book in partner-
ship with a publisher specialized in the market for Brazilian developers.

References

Alves, 1., Pérez, J., Diaz, J., Lépez-Fernandez, D., Pais, M., Kon, F., and Rocha, C. (2023). Har-
monizing DevOps taxonomies — theory operationalization and testing. Submitted to Empirical
Software Engineering. https://arxiv.org/abs/2302.00033.

Fernandez, D. L., Diaz, J., Martin, J. G., Perez, J., and Prieto, A. G. (2021). DevOps team
structures: Characterization and implications. IEEE Transactions on Software Engineering.

Forsgren, N. et al. (2020). A taxonomy of software delivery performance profiles: Investigating
the effects of DevOps practices. In Proceedings of The Americas Conference on Information
Systems 2020, AMCIS 2020, pages 1-6. AIS.

Glaser, B. and Strauss, A. (1999). The discovery of grounded theory: strategies for qualitative
research. Aldine Transaction. Originally published in 1967.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews
in software engineering. Technical report, Keele Universit, University of Durham.

Macarthy, R. W. and Bass, J. M. (2020). An empirical taxonomy of DevOps in practice. In
2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pages 221-228.

Nybom, K., Smeds, J., and Porres, 1. (2016). On the impact of mixing responsibilities between
devs and ops. In International Conference on Agile Software Development, XP 2016, pages
131-143. Springer International Publishing.

Oliveira, N. (2012). Automated organizations: Development and structure of the modern business
firm. Physica-Verlag HD.

Saldafia, J. (2015). The coding manual for qualitative researchers. Sage.

Shahin, M., Zahedi, M., Babar, M. A., and Zhu, L. (2017). Adopting continuous delivery and
deployment: Impacts on team structures, collaboration and responsibilities. In Proceedings

of the 21st International Conference on Evaluation and Assessment in Software Engineering,
EASE’17, pages 384-393. ACM.

Skelton, M. and Pais, M. (2019). Team Topologies: Organizing business and technology teams for
fast flow. IT Revolution Press.



