
Evaluating the Code Comprehension of Novices with Eye
Tracking

José Aldo Silva da Costa1, Rohit Gheyi1

1Universidade Federal de Campina Grande (UFCG)
R. Aprı́gio Veloso, 882 – 58.109-970 – Campina Grande – PB – Brasil

josealdo@copin.ufcg.edu.br, rohit@dsc.ufcg.edu.br

Abstract. Code comprehension is essential for software evolution, but it can
be hindered by structural problems in the code. Despite its importance, re-
searchers often rely on static code metrics to investigate code comprehension,
without considering dynamic aspects such as the visual effort involved. There-
fore, we aim to fill this gap by examining code comprehension using eye-tracking
metrics. We conducted three controlled eye-tracking studies with 128 novices in
three distinct programming languages, C, Python, and Java using constructions
with different granularity levels, namely atoms of confusion, refactorings, and
#ifdef annotations. With respect to atoms of confusion, we found that the
clarified version of the code reduced the time and number of attempts by 38.6%
and 28%, respectively. The use of the Extract Method refactoring significantly
reduced the time of two tasks by 70% to 78.8%, while increasing the accuracy
of three tasks by 20% to 34.4%. The use of #ifdef annotations presented re-
ductions in the modified region by 46.9% in time, 44.7% in the fixation duration,
48.4% in the fixation count, and 60.5% in the regressions count. In addition,
we also identified patterns in our data by observing several visual transitions
going forward and backward between specific code elements which allowed us
to infer confusion in the code. These results provide educators, practitioners,
and researchers with valuable information on certain transformations and their
potential to ease or hinder code comprehension. The study also highlights the
potential of visual metrics to reveal the impact of transformations that cannot
be captured by static code metrics. Our results also pave the way for the deve-
lopment of more advanced tools that track the eye movements of developers and
assist them with helpful suggestions.

Resumo. A compreensão de código é essencial para a evolução do software,
mas pode ser prejudicada por problemas estruturais no código. Apesar de
sua importância, pesquisadores muitas vezes dependem de métricas de código
estático para investigar a compreensão do código, sem considerar aspectos
dinâmicos, como o esforço visual envolvido. Portanto, nosso objetivo é pre-
encher essa lacuna examinando a compreensão do código usando métricas de
rastreamento ocular. Realizamos três estudos controlados de rastreamento ocu-
lar com 128 novatos em três linguagens de programação distintas, C, Python
e Java, utilizando construções com diferentes nı́veis de granularidade, ou seja,
átomos de confusão, refatorações e anotações #ifdef. Em relação aos átomos
de confusão, descobrimos que a versão esclarecida do código reduziu o tempo e
o número de tentativas em 38,6% e 28%, respectivamente. O uso da refatoração

Extract Method reduziu significativamente o tempo de duas tarefas em 70% a
78,8%, enquanto aumentou a precisão de três tarefas em 20% a 34,4%. O uso
de anotações #ifdef apresentou reduções na região modificada de 46,9% no
tempo, 44,7% na duração da fixação, 48,4% no número de fixações e 60,5%
no número de regressões. Além disso, também identificamos padrões em nossos
dados observando várias transições visuais avançando e retrocedendo entre ele-
mentos de código especı́ficos, o que nos permitiu inferir confusão no código. Es-
ses resultados fornecem informações valiosas para educadores, profissionais e
pesquisadores sobre determinadas transformações e seu potencial para facilitar
ou dificultar a compreensão do código. O estudo também destaca o potencial de
métricas visuais para revelar o impacto de transformações que não podem ser
capturadas por métricas de código estático. Nossos resultados também abrem
caminho para o desenvolvimento de ferramentas mais avançadas que rastreiam
os movimentos oculares dos desenvolvedores e os auxiliam com sugestões úteis.

1. Introduction

Code comprehension is crucial for software maintenance and evolution processes, but can
be hindered by structural problems in the code. To address these structural problems,
developers often use behavior-preserving code transformations [Mongiovi et al. 2018,
Soares et al. 2013] aiming to make it easier to understand, maintain, and evolve. Howe-
ver, we still lack empirical evidence on how behavior-preserving code changes affect the
understanding of novice programmers, especially in terms of visual effort.

Developers often read code written by others to understand its behavior, but tiny
patterns in the code can cause misunderstandings, leading to misjudging its behavior.
These patterns, known as atoms of confusion [Gopstein et al. 2017], can obfuscate the
code and confuse developers. Atoms of confusion are present when functionally equiva-
lent alternatives result in better performance. However, coarse-grained approaches may
not suffice in capturing the effect of fine-grained code elements, such as atoms.

Extract and Inline Method are two commonly used refactorings to improve code
understanding. However, there is a lack of empirical evidence on the extent of their ac-
tual impact. Although Fowler [Fowler 1999] suggests that short methods with descriptive
names lead to clearer code, static code metrics reveal an increase in the number of code
smells–patterns in the code that indicate deeper issues [Cedrim et al. 2017]. We lack a
better understanding of what circumstances developers should opt for inlining or extrac-
ting a method. To understand it better, we need to evaluate other dimensions such as the
dynamic perspective of code comprehension using eye-tracking metrics.

Code with annotations such as #ifdef may also affect code comprehension.
There are two types of annotations: disciplined and undisciplined [Medeiros et al. 2015,
Liebig et al. 2011]. Disciplined annotations enclose only complete statements, while un-
disciplined annotations may only enclose partial statements, such as only the opening
bracket. Both achieve the same goal, but disciplined annotations align with the code’s
syntactic structure, while undisciplined annotations do not. Although there are a few
other studies in the literature, there is no consensus yet on whether undisciplined an-
notations should be refactored to become disciplined in practice [Malaquias et al. 2017,
Schulze et al. 2013]. However, previous studies have limitations, either relying solely on

developers’ opinions or on a narrow set of conventional metrics. Fine-grained transfor-
mations may not show observable differences using conventional metrics alone. We need
additional indicators of developer behavior when comprehending annotated code, which
may reveal important insights into the benefits and drawbacks of the annotation discipline.

To better understand the nuances of code comprehension and contribute with a
dynamic additional perspective, we conducted three controlled eye-tracking studies with
128 novices in three distinct programming languages, namely C, Python, and Java using
constructions with different granularity levels, namely atoms of confusion, methods, and
#ifdef annotations.

Regarding the atoms of confusion, we found that the clarified version of the code
reduced the time and number of attempts by 38.6% and 28%, respectively. The use of the
Extract Method refactoring significantly reduced the time of two tasks by 70% to 78.8%,
while increasing the accuracy of three tasks by 20% to 34.4%. The use of #ifdef
annotations presented reductions in the modified region by 46.9% in time, 44.7% in the
fixation duration, 48.4% in the fixation count, and 60.5% in the regressions count. In
addition, we also identified patterns in our data by observing several visual transitions
going forward and backward between specific code elements which allowed us to infer
confusion in the code, such as when adding the particle not before the variable.

We gained deeper insights by analyzing visual effort, time, and attempts. We
investigated: 1) how much time the subjects spent in the refactored code regions, i.e.,
line of code that contains an atom of confusion, an extraction of a method, a method
call, a method inlining, or #ifdef annotations; 2) to what extent transformations can
impact visual metrics; and 3) how transformations impact the code reading with the visual
regressions. The main contributions of this work are:

• A framework for conducting eye tracking controlled experiments, which can be
used to evaluate the effectiveness of behavior-preserving code changes and their
impact on code comprehension and visual effort;

• A controlled experiment using eye tracking with novices in Python to eva-
luate the impact of clarifying atoms of confusion on code comprehen-
sion [da Costa et al. 2023];

• A controlled experiment using eye tracking with novices in Java to evaluate the
impact of the Extract Method on code comprehension;

• A controlled experiment using eye tracking with novices in the C to
evaluate three refactorings that discipline #ifdef annotations in C pro-
grams [da Costa et al. 2021];

• A controlled experiment using eye tracking with novices and practitioners in C
and C++ to evaluate the impact of clarifying atoms of confusion on code com-
prehension [de Oliveira et al. 2020].

For the researchers, our results show the potential of visual metrics to reveal an
impact of code transformations that cannot be captured by static code metrics. While
under the perspective of code metrics, the Extract Method refactoring can have a negative
impact according to a previous study, in our study, we found significant reductions in the
visual fixation duration in the code when the novices solve the tasks Number of Digits
and Next Prime, reaching 78.9%. Educators should avoid using obfuscated code with
atoms such as Multiple Variable Assignment, True or False Evaluation, and Operator

Precedence, as these constructs impact novices’ abilities to understand the code in Python.
Practitioners and language designers’ community should be more careful when using
constructions to simplify the language that could impair the novices’ code comprehension.

2. Problem

In this section, we explain the research gaps in three scenarios that deal with code trans-
formations aiming to improve code comprehension. For instance, atoms of confusion
are prevalent in open-source projects in C language [Medeiros et al. 2019] but also occur
in other programming languages. In Figure 1(a), we illustrate a Conditional Expression
found in the SwiftShader project for Python language and adapted to a complete code
snippet. Iterating over a list of elements, in Line 4, num receives the value of elem if
elem is equal to three; otherwise, num receives one. If the implications of the study of
Gopstein et al. [Gopstein et al. 2017] for C language are sustainable for Python as well,
the Conditional Expression in Line 4 impairs the code understanding because the assign-
ment depends on the value of a variable.

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4 num = elem if elem == 3 else 1
5 print(num)

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4 if (elem == 3):
5 num = elem
6 else:
7 num = 1
8 print(num)

(a)
(b)

Figura 1. Code adapted from SwiftShader with (a) obfuscated code containing
the atom Conditional Expression, and (b) the clarified version of the code.

Medeiros et al. [Medeiros et al. 2019] proposed a clarified solution that breaks
the line containing the atom into four lines of code as presented in Figure 1(b). They also
investigated the subjective perceptions of experienced developers regarding the atom in C
language, finding that the code with the atom did not negatively influence the developers’
understanding. Additionally, developers accepted pull requests with both obfuscated and
clarified code versions. We need additional empirical evidence to comprehend better
the impact of atoms of confusion on code comprehension. Coarse-grained approaches
may not suffice in capturing the effect of fine-grained code elements, such as atoms.
Eye tracking has demonstrated potential in assessing the impact of small-grained code
changes on comprehension by recording human subjects’ eye movements and analyzing
their visual attention [da Costa et al. 2021, Sharafi et al. 2015, Busjahn et al. 2011].

We simplified a sequence of fixations performed by two subjects in Figure 2. Each
red circle represents a fixation that varies in size according to duration. The sequence and
direction of fixations are depicted in chronological order with a number inside. In the
obfuscated version (Figure 2(a)), the subject makes eight fixations with six within the
line of the atom (Line 4). In the clarified version (Figure 2(b)), the subject makes five
fixations, with four of them within the atom region (Lines 4–7). Thus, the subject fixates
more times and for a longer time in obfuscated version. In addition, the subject regresses
visually in the code more times in obfuscated version. In obfuscated version, she goes

back three times in code, twice vertically examining the list, and one time horizontally to
possibly inspect a variable. In the clarified version, the subject goes back only once to
the list, making a vertical regression between lines. By examining their behavior at this
small-grained level, we can new insights.

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4 num = elem if elem == 3 else 1
5 print(num)

1 elements = [7, 4, 3]
2 num = 0
3 for elem in elements:
4 if (elem == 3):
5 num = elem
6 else:
7 num = 1
8 print(num)

(a)
(b)

84

1 2 63 75
3

1 2

5

4

Figura 2. Code with eye gaze patterns for (a) obfuscated code containing the
atom Conditional Expression, and (b) the clarified version of the code.

We also need more evidence to understand how classical code transformations
affect our ability to comprehend the code. Extract and Inline Method are two commonly
used refactorings to improve code understanding. However, there is a lack of empirical
evidence on the extent of their actual impact. Although Fowler [Fowler 1999] suggests
that short methods with descriptive names lead to clearer code, the Extract Method
can increase the number of code smells instead [Cedrim et al. 2017]. We lack a better
understanding of what circumstances developers should opt for inlining or extracting
a method. In another scenario, comprehending code with #ifdef directives can be
difficult despite the relevance and prevalence of conditional compilation in practice. Code
with either disciplined or undisciplined annotations may affect program comprehension.
However, empirical knowledge on the influence of the annotation discipline is still scarce.

Overall, there is no consensus on whether developers should use disciplined
annotations. Previous studies are either strictly based on developers’ opinions or on a
limited set of conventional metrics related to code comprehension, such as time and
accuracy. There are not always observable differences in applying fine-grained refacto-
rings using conventional metrics, and the use of #ifdef directives is often employed
in a fine-grained program context (i.e., attached to one or a few statements). Opinions
and conventional measures may not reveal important nuances in the comprehension
of disciplined versus undisciplined annotated code, which may also help to better
explain the benefits and drawbacks of annotation discipline. Therefore, there is a need to
perform additional controlled experiments that also enable the analysis of complementary
indicators about what the developer is doing while trying to comprehend annotated code.

Research Problem: The current research on the impact of code transformations on
code comprehension lacks conclusive results and details on possible qualitative and
quantitative correlations. Our research problem is considered in the scope of using
an eye tracking camera to evaluate constructions with different granularity levels,
namely atoms of confusion, refactorings, and #ifdef annotations with 128 novices in
three distinct programming languages, C, Python, and Java.

3. Study Goals
In this work, we compare programs versions before and after being transformed for the
purpose of understanding how code transformations can be associated with improvements
with respect to time, number of answer attempts and visual effort from the point of view
of novices in the different programming languages in the context of tasks adapted from
introductory programming courses. We address five research questions (RQs):

RQ1: To what extent does the code transformation affect task completion time? Fol-
lowing prior studies [Gopstein et al. 2017, de Oliveira et al. 2020], to answer this ques-
tion, we measure how much time the subject spends in the whole program to specify the
correct output, in addition to the time in specific areas of the code.

RQ2: To what extent does the code transformation affect the number of attempts?
To answer this question, we measure the number of attempts made by the subject until
specifying the correct output of the program.

RQ3: To what extent does the code transformation affect fixation duration? Longer
fixations have been linked to increased attention to the stimuli [Busjahn et al. 2011]. To
answer this question, we measure the duration of each fixation in the programs.

RQ4: To what extent does the code transformation affect fixation count? More fi-
xations have been linked to increased attention to complex code [Sharafi et al. 2015]. To
answer this question, we count the number of fixations in the programs.

RQ5: To what extent does the code transformation affect regressions count? Deve-
lopers in imperative programming languages may read code left-to-right, top-to-bottom,
like natural language. To answer the question, we counted regressive eye movements in
the opposite direction of the writing system. For a fair comparison, both versions had
loops that iterated over the same number of elements.

4. Method
We conducted an eye-tracking experiment investigating how six atoms of confusion
impact code comprehension for 32 students with programming knowledge but limi-
ted experience with Python. We compare programs containing six atoms of confu-
sion with functionally equivalent clarified versions to observe how and to what extent
they influence the subjects’ performance regarding time, number of attempts, and vi-
sual effort. Previous studies have used similar metrics to investigate code comprehen-
sion [Malaquias et al. 2017, Schulze et al. 2013, Busjahn et al. 2011]. We analyze these
metrics in the whole code and the main Area of Interest (AOI). The AOI defines the code
region containing the atom or its corresponding clarifying version. In this study, we se-
lected the six atoms that occur in real projects: Multiple Variable Assignment, True or
False Evaluation, Conditional Expression, Operator Precedence, Implicit Predicate, and
Augmented Operator. Each program containing one of these obfuscating atoms has a
functionally equivalent clarified version to be compared. We use the Latin Square design
to assign the programs and minimize learning effects. We made all the supplementary
material publicly available in our replication package [da Costa et al. 2023].

To investigate the impact of Extract Method refactoring, we conduct a control-
led experiment with 32 novices in Java and measure their objective performance with
time, number of attempts, and visual effort in the entire code and the AOI. We interview

the novices regarding their perceptions of the difficulties of the programs and analyze the
qualitative data using the method of grounded theory. We select eight tasks from introduc-
tory programming courses: Sum Numbers, Calculate Next Prime, Return Highest Grade,
Calculate Factorial, Count Multiples of Three, Calculate Area of Square, Check If Even,
and Count Number of Digits. For each task, we compare two functionally equivalent
versions, one with a method inlined and the other with the method extracted.

To investigate the impact of #ifdef annotations, we conducted a controlled ex-
periment with 64 subjects majoritarily novices. We consider all the subjects who know
how to program but have little experience in C programming language “novices”. We ob-
serve how disciplined annotations influence their comprehension with six tasks in terms
of time, accuracy, and visual effort. We selected the three refactorings most preferred by
developers to discipline annotations according to Medeiros et al. [Medeiros et al. 2018].
The three refactorings differ in various ways: Refactoring 1 ⟨wrapping function call⟩
duplicates a token in a function call to wrap only entire statements with preprocessor di-
rectives. Refactoring 2 ⟨undisciplined if conditions⟩ resolves undisciplined directives
surrounding boolean expressions by defining a fresh variable to maintain the statement’s
conditions. Refactoring 3 ⟨alternative if statements⟩ uses an alternative if statement,
also defining a fresh variable to keep the statement’s condition.

5. Results

In the context of novices dealing with undisciplined #ifdef annotations, we observed
that the developers have a reduced visual effort. One refactoring added one extra variable
and two extra lines of code, which is only a small impact on the LOCs, but it presented
reductions in the modified region by 46.9% in the time, 44.7% in the fixation duration,
48.4% in the fixation count, and 60.5% in the regressions count. These results have the
potential to provide more insights and deepen the discussion on the advantages or disad-
vantages of disciplining annotations.

Our results revealed an impact of atoms to a considerable extent. The clarified
version of the code containing the Operator Precedence reduced the time in the AOI by
38.6%. In the visual metrics, the number of regressions was reduced to the extent of 50%.
On the other hand, the clarified version of the code containing the atom Multiple Variable
Assignment increased the number of regressions reaching the extent of 60%. Thus, even
in small and simple programs, we observed a considerable impact of the obfuscated and
clarified on the code comprehension. In addition, atoms of confusion also revealed an
impact on the focus of attention of subjects and the regions that received most of the eye
attention were the regions with atoms [de Oliveira et al. 2020].

Eye tracking allows us to see the impact of adding the parenthesis at a fine-
grained level. We isolated the subjects who submitted more than one answer to solve
and compared the eye movements between FirstOperand→ SecondOperand and
SecondOperand → ThirdOperand. In the obfuscated version, FirstOperand
→ SecondOperand has the and operator which has precedence but no parenthesis.
We learned that they go back and forth between FirstOperand, SecondOperand,
and ThirdOperand with a similar effort. However, we observed that they
make ThirdOperand → FirstOperand nine times and FirstOperand →
ThirdOperand three times, which might be indicative of confusion. The pattern

ThirdOperand→ FirstOperand can indicate wrong precedence involving the or
operator between the regions (See Figure 3).

Clarified version

pontos = 15

if ((False and True) or True):

 media = pontos/3

else:

 media = 0

print(media)

Obfuscated version

pontos = 15

if (False and True or True):

 media = pontos/3

else:

 media = 0

print(media)

WhiteSpace

SecondOperand
ThirdOperand

Else
ConditionFalse
PrintOutput

PointsAssignment
FirstOperand

ConditionTrue

WhiteSpace

SecondOperand
ThirdOperand

Else
ConditionFalse
PrintOutput

PointsAssignment
FirstOperand

ConditionTrue

Figura 3. Set of regions inside the code version with Operator Precedence atom
and in the code with the clarified code version.

We performed a deeper analysis of the gaze transitions to understand the thought
process of the subjects. For the clarified version of the Operator Precedence, the sub-
jects exhibited transitions going forward and backward concentrating on the expression
inside the parentheses. We observed the same transitions for other subjects. Consider the
transitions exhibited by the following subjects in Figure 4.

(a) Transitions of
Subject 1

(b) Transitions of
Subject 5

(c) Transitions of
Subject 13

Figura 4. Sequence of transitions of a subject on the clarified code version with
Operator Precedence.

In the gaze, we observed transitions going forward and backward between ‘False
and True’ which may indicate that the subject understands which sub-expression should
be evaluated first. Subject 5 mentioned that it was easy to solve because of the parenthesis.
On the other hand, for the obfuscated version of the Operator Precedence, we found tran-
sitions that indicate confusion. Consider the gaze transitions exhibited by the following
subjects in Figure 5.

(a) Transitions of
Subject 2

(b) Transitions of
Subject 2

(c) Transitions of
Subject 10

Figura 5. Sequence of transitions of a subject on the obfuscated code version
with Operator Precedence.

In the gaze, we observed transitions going forward and backward repeatedly
between the logical operators ‘and’ and ‘or’, which may indicate that the subjects were
not certain about which operator should come first. Subject 2 mentioned having diffi-
culties with the precedence, made an error in the first submission, and reported that only
later on she realized that the ‘and’ had precedence over ‘or’. Consider the transitions
exhibited by the subjects in Figure 6.

(a) Transitions of
Subject 4

(b) Transitions of
Subject 4

(c) Transitions of
Subject 8

Figura 6. Sequence of transitions of a subject on the clarified code version with
Operator Precedence.

We observed transitions going forward and backward between ‘True or True’
which may indicate that the subject had doubts about which expression should be evalu-
ated first. Indeed, Subject 4 mentioned having difficulties with the ‘and’ and ‘or’ ope-
rator. The lack of parenthesis may lead to more transitions going forward and backward
between the logical operators and lead to making wrong associations. Unlike the obfus-
cated version, in the clarified version we did not observe such transitions going forward
and backward eye movements between ‘True) or True’.

Obfuscated version Clarified version

elementos = [7, 4, 3]

resultado = 0

for elem in elementos:

 resultado = elem if elem == 3 else 10

print(resultado)

WhiteSpace

ForLoop
IfCondition

Else
ConditionFalse
PrintResult

ListOfValues

elementos = [7, 4, 3]

resultado = 0

for elem in elementos:

 if (elem == 3):

 resultado = elem

 else:

 resultado = 10

print(resultado)

ResultAssignment

ConditionTrue

WhiteSpace

ForLoop

Else
ConditionFalse
PrintResult

ListOfValues
ResultAssignment

IfCondition
ConditionTrue

Figura 7. Set of regions inside the code version with Conditional Expression
atom and in the code with the clarified version of code.

For the obfuscated version of the atom Conditional Expression depicted in Fi-
gure 7, we observed several transitions going forward and backward in the center of the
expression. Several subjects mentioned being confused about the condition line. For
instance, one subject mentioned that the ternary if was confusing and needed two sub-
missions to solve the task while spending more than twice the average time in the AOI
than the subjects in the clarified version. The true condition before the condition being
tested can make the subjects go back more times to observe it. For instance, consider the
transitions exhibited by the subjects in Figure 8.

(a) Transitions of Subject 4 (b) Transitions of Subject 2

(c) Transitions of Subject 12

Figura 8. Sequence of transitions of subjects on the clarified code version with
Conditional Expression.

In the gaze transitions, the subjects often go back in the code to the true condition.
Subject 4 regresses three times the average number of regressions in the AOI in the cla-
rified version, which can indicate confusion. We also observed similar transitions going
forward and backward for other subjects. On the other hand, in the clarified code, we
observed longer transitions between true and false conditions. For instance, consider the
transitions exhibited by the subjects in Figure 9.

(a) Transitions
of Sub-
ject 3

(b) Transitions
of Sub-
ject 5

(c) Transitions
of Sub-
ject 9

Figura 9. Sequence of transitions of subjects on the clarified code version with
Conditional Expression.

The subjects make transitions between statements when the condition is true and
false. However, unlike the obfuscated code, the transitions are not concentrated nor go
back and forth so often. Instead, they are in the vertical between lines of code. Subject
5 commented about the structure of the code which she found easy. She solved the tasks
in the first submission with half of the time and half of the number of regressions in the
AOI compared to the average time and number of regressions in the obfuscated version.
Breaking one long line of the condition expression into more lines modified the structure
of the code but also seemed to improve the performance of the subjects.

We approach comprehension by triangulating time, attempts, and visual effort. By
adding eye tracking, we can infer potential areas with bottlenecks in the code tasks. For
instance, when the novices spend more time in the code written in a certain style and
make more attempts, we can triangulate this information with the areas of interest in the
code to observe where they most fixated, for how long, and where they usually go back in
the code. These observations, supported by the interviews, can help us identify the code
areas in which the novices faced difficulties, find reading patterns, and give us useful
insights into how certain patterns can affect the developers in the comprehension of the
code. These insights could provide a meaningful strategy to integrate an eye tracker into
a computer so that we can track the eyes of the developers while they observe the code in
an Integrated Development Environment (IDE). This strategy can provide the developer
with immediate feedback on achieving more productivity.

Concerning the Extract Method version, we observed reductions in the time of
two tasks, which reached the extent of 78.8%. For three tasks, the subjects attempt 34.4%
less to solve the tasks. Moreover, they solved them without going back 84.6% less often
in the code. However, negative effects were also observed for some tasks, reaching an
increase of 200% in the visual metrics.

In Figure 10, we built two graphs to depict the distribution of the regressions for
two subjects who examine a program to determine the Highest Grade. We chose two
subjects whose results for time, attempts, and visual metrics were consistent with the

public class Main {

 public static void main(String[] args) {

 int[] notas = {7,8,9};

 int resultado = notas[0];

 for (int i = 1; i < notas.length; i++) {

 if (notas[i] > resultado) {

 resultado = notas[i];

 }

 }

 System.out.println(resultado);

 }

}

Inlined

7

4

5

1

2

3

12

11

9

10

8

6

Extracted

8

6

4

1

7

12

11

9

10

15

14

13

2

3

5

Regressions count

2 4 6 8 10 12 14

public class Main {

 static int retornaMaiorNotaDaLista(int[] notas) {

 int resultado = notas[0];

 for (int i = 1; i < notas.length; i++) {

 if (notas[i] > resultado) {

 resultado = notas[i];

 }

 }

 return resultado;

 }

 public static void main(String[] args) {

 int[] notas = {7,8,9};

 System.out.println(retornaMaiorNotaDaLista(notas));

 }

}

Figura 10. Visual regressions for the inlined and extracted method versions to
determine the Highest Grade.

others. One subject solved the inlined version, and the other solved the extracted method
version. The graph shows visual regressions and the nodes represent lines of code, and
the grayscale of edges represents how often the regression occurred.

Comparing the examples, we observe that in the inlined version, the subject goes
back more times, especially in the lines where the variables were assigned values and in
the loop followed by the decision control. In the extracted version, we observed regres-
sions between the call of the method and the method. Those regressions were expected
because the method was located before the call in the code. However, the subject makes
fewer regressions while examining the method’s body.

Based on the lessons learned from the controlled experiments, we developed a
framework for conducting eye tracking studies in the context of behavior-preserving code
changes on the code comprehension of novice programmers, such as depicted in Fi-
gure 11. We learned a set of lessons about the design of programs, such as the size
and style, the use of specific eye tracking metrics, and parameters for fixations detection,
among others. In addition, we contribute with visualizations for the visual effort regarding
transitions between code regions and horizontal/vertical regressions in the code.

+ +
100
ms

120
ms

80
ms

50
ms

1
2

3
4

3

Fixation
Duration

Fixation
Count

+
Interview

Time Attempts

2
1

Qualitative
analysis

+

Visual Effort

Regressions
Count

Figura 11. Framework overview for conducting eye tracking studies on code com-
prehension of novice programmers.

To derive insights and better analyze our data, we developed new graphic visua-
lizations to compare code reading behavior. We map the chronological sequence of gaze
transitions between the code lines to visualize and better understand the dynamics of eye
movements before and after applying the code transformation. A graph can help us vi-
sualize such dynamics with a node representing a line of code and an edge representing
a transition, such as in Figure 12 for the #ifdef directives. In it, the edge weight re-
presents how frequently the subjects made the same saccades from one specific line to
another while performing the same task. The intensity of the colors varies according to

 void main(void) {

 int output;

 int value_A = 0;

 int value_B = 0;

 #ifdef MACRO

 if(value_A == 1)

 #else

 if(value_B == 0)

 #endif

 output = 1;

 else

 output = 0;

 printf("%d", output);

 }

2

3

4

5

6

7

8

9

10

11

12

13

14

0.56

0.87

1.43

3.81

0.62

0.87

0.75

2.56

0.43

2.25

2.122.81

3.00 1.811.43

0.430.93 2.25

1.12

2.37

0.75
3.31 2.25

0.752.68
0.81

1.50

0.87

0.43

4.31

2.31

2.25

1.00

0.50

0.50

1

0.37

1.62

0.31

1.12

1.75

0.43
0.50

1.06
0.56

0.310.31

0.56
0.31

0.81

0.50

0.50

0.50
0.81

0.62

0.43

0.43

0.37

0.37

0.68

0.87

0.56

1.50

1.18

0.43

1.18

0.43

(a) Undisciplined annotations

void main(void) {

 int output;

 int value_A = 0;

 int value_B = 0;

 int test;

 #ifdef MACRO

 test = (value_A == 1);

 #else

 test = (value_B == 0);

 #endif

 if(test == 1)

 output = 1;

 else

 output = 0;

 printf("%d", output);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.56

0.50

0.62

0.68

0.50

1.18

2.37

0.87

1.25 0.75

0.56

0.87

0.68 0.81

0.50

0.43

0.37

0.37

0.750.37

0.81

0.43

0.81 0.620.50

2.25

0.31

0.50

0.87 0.750.31

(b) Disciplined annotations

Figura 12. Visualization of visual transitions in a graph on a program.

the weight. The darker the red color, the heavier the weight, which implies the more
frequently they made the same transition.

6. Related Work
Gopstein et al. [Gopstein et al. 2017] introduced the term “atom of confusion” as the
smallest code pattern that can cause misunderstanding in programmers. They found that
code snippets containing atoms of confusion are harder to understand than clarified versi-
ons. We conducted an experiment using Python and eye-tracking to observe the impact of
obfuscated code with atoms of confusion on novice programmers’ comprehension. Our
approach used more meaningful names for variables and was closer to practical scenarios.

Medeiros et al. [Medeiros et al. 2019] studied the prevalence of atoms of confu-
sion in C open-source projects using a mixed research approach involving experienced
developers. Yeh et al. [Yeh et al. 2021] used an EEG device to measure the cognitive load
of the developers as they attempted to predict the output of C code snippets. They aimed
to observe whether particular patterns within the code snippet induced higher levels of
cognitive load. They found that particular patterns indeed affect the developers’ cognitive
processes. We focused on eye movements instead of brain activity. We explored in more
depth the visual effort regarding atoms in Python language.

Langhout and Aniche [Langhout and Aniche 2021] replicated the work of Gops-
tein et al. [Gopstein et al. 2017], however, in the Java programming language. They found
that atoms of confusion can cause confusion among novice developers. We also investi-
gated the potential of atoms to influence the code comprehension of novices negatively.
However, we did so in Python language and from the perspective of the eye tracking
measures.

Cedrim et al. [Cedrim et al. 2017] used code metrics such as Lines of Code, Cou-
pling Between Objects, and Cyclomatic Complexity to evaluate several refactorings. They
found that the Extract Method increases the number of smells in the code, suggesting that

the Extract Method refactoring might have a negative impact on code quality. They also
found that the number of smells remained the same after applying Inline Method, making
it neutral. The three most common reasons were to reuse code, introduce an alterna-
tive method signature, and improve readability. We also investigated the Extract Method,
however, through controlled experiments focusing on the extent of its impact on the code
comprehension of novices with eye tracking. We also explored their subjective percepti-
ons to understand better the factors that affect their understanding.

Medeiros et al. [Medeiros et al. 2018] proposed a catalog of refactorings to
convert undisciplined annotations to disciplined ones. For certain refactorings, de-
velopers showed a preference for the disciplined version, while for others, both
disciplined and undisciplined versions had similar preferences. However, there
is no consensus on whether undisciplined annotations should become disciplined
ones in practice [Malaquias et al. 2017, Schulze et al. 2013]. For instance, while
one study found that undisciplined annotations are more time-consuming and error-
prone [Malaquias et al. 2017], another found no differences regarding task completion
time and accuracy [Schulze et al. 2013].

Fenske et al. [Fenske et al. 2020] conducted a controlled study involving both an
experiment and questionnaires with 521 experienced developers to understand the impact
of refactoring C preprocessor directives. They evaluated coarse-grained transformations
converting from undisciplined to disciplined annotations instead of evaluating a single
fine-grained transformation. We used an eye tracker to analyze how disciplining anno-
tations impact code comprehension using a different perspective not considered in other
studies. We observed differences for two of the three refactorings evaluated.

7. Conclusions and Contributions

We report on three controlled experiments with an eye tracking camera to evaluate the im-
pact of code transformations on the code comprehension of 128 novices in three distinct
programming languages, C, Python, and Java using constructions with different granula-
rity levels, namely atoms of confusion, refactorings, and #ifdef annotations.

With an eye tracker, we revealed an impact of code transformations that could not
be captured by static code metrics: 1) the time spent by subjects specifically in the region
containing the atom of confusion, method extraction, or #ifdef annotation; 2) The
number of fixations in the code and/or in the modified area; 3) The duration of fixations in
the modified area; 4) The number of eye movement regressions in the code or specifically
in the region containing the atom, method extraction, or #ifdef annotation.

These visual metrics allowed us to understand better the impact of clarified atoms,
extracted methods, and disciplined #ifdef annotations on the visual effort – previous
works have measured the impact on time and accuracy, but none of them could measure
to what extent the atoms impacted the fixation duration, fixations count, and regressions
count. We also better understood how and measured the extent of the impact of clarified
atoms, extracted methods, and disciplined #ifdef annotations on the code reading. These
investigations resulted in published articles in journals and international collaborations.

For the research community, our study setup exploring the visual effort dimension
contributes to nuances not observed by previous works. For instance, in the analysis of

the visual data for code containing the Multiple Variable Assignment, we perceived that
the use of multiple assignments within the same line impacted the way the subjects read
the code. The code with Multiple Variable Assignment allowed the subjects to read the
assignments in a more direct manner, with 60% fewer regressions in the AOI. When the
assignments are split between two lines, to make the code clearer, the subjects tended
to make more vertical regressions and to keep coming back to those lines, transitioning
between those lines and the lines of code that later use them. Hopefully, this will encou-
rage researchers to consider eye tracking as a promising alternative to evaluate atoms of
confusion. Other dimensions, such as mapping neural activities with Functional Magnetic
Resonance Imaging (fMRI) or tracking all the subjects’ activity during the experiments,
could possibly reveal other insights and allow us to dive deeper into how this atom impacts
difficulty beyond visual effort. This can be a future direction for research.

In the gaze transitions of the Conditional Expression, the subjects often go back
in the code to the true condition. One subject regressed three times the average number of
regressions in the AOI in the clarified version, which can indicate confusion. We observed
similar transitions going forward and backward for other subjects. On the other hand, in
the clarified code, we observed longer transitions between true and false conditions. In the
gaze transitions of the Operator Precedence, we observed transitions going forward and
backward repeatedly between the logical operators ‘and’ and ‘or’, which may indicate
that the subjects were not certain about which operator should come first. One subject
mentioned difficulties with the precedence, made an error in the first submission, and
reported that only later on she realized that ‘and’ had precedence over ‘or’

In future work, we envision the development of a tool that tracks the eye move-
ments of developers and assists them with suggestions to improve the code. They can
be implemented in IDEs that can monitor eye movements and identify in real-time when
developers are confused. For instance, if a tool detects transitions going forward and
backward eye movements between two operators such as ‘and’ and ‘or’, or between an
expression that has no precedence, a tip should arise to add the parentheses. We envision
proposing heuristics or building a model whereby a programmer receives an arbitrary
source code, and we use eye tracking data to identify which elements were atom candida-
tes or infer confusing regions that impacted negatively the code comprehension.

Referências
Busjahn, T., Schulte, C., and Busjahn, A. (2011). Analysis of Code Reading to Gain More

Insight in Program Comprehension. Koli Calling’11, pages 1–9.

Cedrim, D., Garcia, A., Mongiovi, M., Gheyi, R., Sousa, L., de Mello, R., Fonseca, B.,
Ribeiro, M., and Chávez, A. (2017). Understanding the Impact of Refactoring on
Smells: A Longitudinal Study of 23 Software Projects. ESEC/FSE’17, page 465–475.

da Costa, J. A. S., Gheyi, R., Castor, F., de Oliveira, P. R. F., Ribeiro, M., and Fonseca,
B. (2023). Seeing Confusion through a New Lens: on the Impact of Atoms of Confu-
sion on Novices’ Code Comprehension. Empirical Software Engineering, to appear(to
appear):to appear.

da Costa, J. A. S., Gheyi, R., Ribeiro, M., Apel, S., Alves, V., Fonseca, B., Medeiros, F.,
and Garcia, A. (2021). Evaluating Refactorings for Disciplining #ifdef Annotations:
An Eye Tracking Study with Novices. Empirical Software Engineering, 26(5):1–35.

da Costa et al. (2023). “Supplementary Material for the Thesis (Artifacts)”. At https:
//github.com/josealdo/material-complementar-tese.

de Oliveira, B., Ribeiro, M., da Costa, J. A. S., Gheyi, R., Amaral, G., de Mello, R.,
Oliveira, A., Garcia, A., Bonifácio, R., and Fonseca, B. (2020). Atoms of Confusion:
The Eyes Do Not Lie. SBES’20, pages 243–252.

Fenske, W., Krüger, J., Kanyshkova, M., and Schulze, S. (2020). #ifdef Directives
and Program Comprehension: The Dilemma between Correctness and Preference.
ICSME’20.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Boston, MA,
USA: Addison-Wesley/Longman.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang, Y., Yeh, M. K.-C., and Cappos,
J. (2017). Understanding Misunderstandings in Source Code. ESEC/FSE’17, pages
129–139.

Langhout, C. and Aniche, M. (2021). Atoms of Confusion in Java. (ICPC’21), pages
25–35. IEEE.

Liebig, J., Kästner, C., and Apel, S. (2011). Analyzing the discipline of preprocessor
annotations in 30 million lines of C code. AOSD’11, pages 191–202.

Malaquias, R., Ribeiro, M., Bonifácio, R., Monteiro, E., Medeiros, F., Garcia, A., and
Gheyi, R. (2017). The Discipline of Preprocessor-Based Annotations – Does #ifdef
TAG n’t #endif Matter. ICPC’17, pages 297–307. IEEE.

Medeiros, F., Lima, G., Amaral, G., Apel, S., Kästner, C., Ribeiro, M., and Gheyi, R.
(2019). An Investigation of Misunderstanding Code Patterns in C Open-source Soft-
ware Projects. Empirical Software Engineering, 24(4):1693–1726.

Medeiros, F., Ribeiro, M., Gheyi, R., Apel, S., Kästner, C., Ferreira, B., Carvalho, L., and
Fonseca, B. (2018). Discipline matters: Refactoring of preprocessor directives in the
#ifdef hell. IEEE Transactions on Software Engineering, 44(5):453–469.

Medeiros, F., Rodrigues, I., Ribeiro, M., Teixeira, L., and Gheyi, R. (2015). An empirical
study on configuration-related issues: investigating undeclared and unused identifiers.
In (GPCE’15), pages 35–44.

Mongiovi, M., Gheyi, R., Soares, G., Ribeiro, M., Borba, P., and Teixeira, L. (2018).
Detecting overly strong preconditions in refactoring engines. IEEE Transactions on
Software Engineering, 44(5):429–452.

Schulze, S., Liebig, J., Siegmund, J., and Apel, S. (2013). Does the Discipline of Prepro-
cessor Annotations Matter?: A Controlled Experiment. GPCE ’13, pages 65–74.

Sharafi, Z., Shaffer, T., Sharif, B., and Guéhéneuc, Y.-G. (2015). Eye-tracking Metrics in
Software Engineering. APSEC’15, pages 96–103. IEEE.

Soares, G., Gheyi, R., and Massoni, T. (2013). Automated behavioral testing of refacto-
ring engines. IEEE Transactions on Software Engineering, 39(2):147–162.

Yeh, M. K.-C., Yan, Y., Zhuang, Y., and DeLong, L. A. (2021). Identifying Program
Confusion Using Electroencephalogram Measurements. Behaviour & Information Te-
chnology, pages 1–18.

https://github.com/josealdo/material-complementar-tese
https://github.com/josealdo/material-complementar-tese

	Introduction
	Problem
	Study Goals
	Method
	Results
	Related Work
	Conclusions and Contributions

