

Insights on Transferring Software Engineering Scientific

Knowledge to Practice

Talita V. Ribeiro1, Jeffrey C. Carver2, Guilherme H. Travassos1

1Programa de Engenharia de Sistemas e Computação – Universidade Federal do Rio de

Janeiro (UFRJ), Rio de Janeiro, Brasil

2Department of Computer Science – University of Alabama, Tuscaloosa, USA.

{tvribeiro,ght}@cos.ufrj.br, carver@cs.ua.edu

Abstract. CONTEXT. In software engineering (SE), aligning research and

practice has long been challenging. GOAL. To assist researchers in extracting

practical issues from the practical knowledge repositories of SE and making

scientific information about SE accessible to practitioners. METHOD. We

conducted several empirical studies to determine the causes of the disconnect

between research and practice, which makes it challenging for practitioners to

seek out and apply scientific knowledge. RESULTS. We obtained data on

practitioners' difficulties with finding, comprehending, and evaluating SE

scientific knowledge that supported us in creating a set of eight heuristics for

conducting practical research in SE.

Resumo. CONTEXTO. Na engenharia de software (ES), alinhar pesquisa e

prática tem sido um desafio. OBJETIVO. Auxiliar os pesquisadores na extração

de questões práticas dos repositórios de conhecimento prático de ES; e em

tornar as informações científicas sobre ES acessíveis aos profissionais.

MÉTODO. Realizamos vários estudos experimentais para determinar as causas

da desconexão entre pesquisa e prática que torna desafiador para os

profissionais buscar e aplicar o conhecimento científico. RESULTADOS.

Obtivemos dados sobre os desafios dos profissionais para encontrar, entender

e avaliar a literatura científica de ES que nos auxiliaram a construir um

conjunto de oito heurísticas para a realização de pesquisas práticas em ES.

1. Introduction

Software engineering (SE) research needs practice to evolve. Since the 1980s (BASILI,

SELBY, and HUTCHENS, 1986), empirical research has supported evaluating,

predicting, understanding, controlling, and improving software development processes

and products. Many software technologies have been developed to support various

development process areas, from requirements elicitation to software deployment. One of

the most significant things we took away from this period was the realization that the SE

research community and the industry must work together to provide high-quality and

pertinent study results and proposals (SJøBERG, DYBÅ, and JøRGESEN, 2007).

 SE practice can take advantage of scientific production as well. Many academic

software technologies have been widely employed in practice since their inception till the

present. For instance, Simula, a language for discrete event simulation, is credited as an

inspiration for object-oriented programming. Simula was developed in the 1960s as part

of a project by scientists at the Norwegian Computing Center (DAHL, 2002).

Additionally, academics documented software quality prediction with software metrics

in the 1970s (AKIYAMA, 1971) (MCCABE, 1976) (HALSTEAD, 1977), and they are

currently included in numerous IDEs and source code analysis tools for various

programming languages. Also, software design patterns (BECK and CUNNINGHAM,

1987) (GAMMA et al., 1994) are examples of academic creations that successfully

merged with practice.

 Despite the reciprocal benefits, SE has struggled to bridge the gap between

research and practice from about 1969 to the present (GAROUSI, PETERSEN, and

OZKAN, 2016). However, over this time, there have been numerous attempts to facilitate

information transfer between these two groups. Researchers were able to grasp the actual

issues that arise in software development projects, for instance, by conducting surveys

(PFLEEGER and KITCHENHAM, 2001) with practitioners and conducting

ethnographies (SHARP, DE SOUZA, and DITTRICH, 2010) in software organizations.

Design science (HEVNER and CHATTERJEE, 2010) and action research were

introduced into software development projects. These methods assisted practitioners in

resolving local problems while using researchers alongside their software teams.

Additionally, literature review guidelines (KITCHENHAM and BUDGEN, 2022) were

developed and employed in industrial settings to aggregate various study results and offer

guidance for software projects. Even so, sharing knowledge using these methods is only

used sometimes in the SE industry.

 At least in a solo practitioner effort, software companies rarely use scientific

findings and results to support decision-making (JEDLITSCHKA, JURISTO, and

ROMBACH, 2014). As researchers, we understand that disregarding scientific evidence

in practice can result in inadequate technology adoptions that are neither suitable nor

applicable to the software project needs (DYBÅ, KITCHENHAM, and JøRGENSEN,

2005). However, claiming that software engineers in the software sector make poor

decisions is false. As an illustration, since its debut in 2008, Stack Overflow (ATWOOD

and SPOLSKY, 2008) has been a technological forum for professionals to discuss

computer programming, exchange tips for developing software, and advance software

technologies. Its intense use by software engineers correlates with its popularity, as seen

by Alexa's ranking, which ranks the platform among the top 100 most frequented websites

globally (KAHLE and GILLIAT, 1996).

 We can infer from this situation that the scientific production, as it has been made

available to practitioners, has not been sufficient to meet their informational needs. Other

research fields have noted this situation (STRAUS, TETROE, and GRAHAM, 2013).

Researchers must provide mechanisms for practitioners to apply scientific knowledge

more naturally, such as with less restrictive information sources, rather than simply urging

them to look for and use scientific productions. In this manner, the use of scientific

knowledge as a foundation for decision-making during SE activities can be increased.

Based on this scenario, this research work conducted a series of experimental studies to

identify why the gap between research and practice still exists even after so much effort

from the academic side to bridge it. The findings supported the proposal of research

support to produce studies that learn from practice and provide practice with scientific

knowledge.

 The next sections are organized as follows: Section 2 presents an overview of the

context this research is placed, as well as the research goal, questions, and methodology

used for their investigation; Section 3 presents the investigation concerning the challenges

SE practitioners might encounter while taking scientific knowledge into practice; Section

4 presents the investigation concerning practitioners' information needs; Section 5

presents a set of eight heuristics for conducting practical research on SE; Section 6

presents the final remarks.

2. Research Context, Goal, Questions, and Methodology

2.1. The Context and Goal of this Research

Information diffusion, transfer, and translation are three key ideas that help us

comprehend the process of moving information from those who produce it to those who

utilize it, from its creation to its application. These concepts are connected and frequently

used interchangeably in technical literature; they relate to transmitting information from

its creator (the transferor) to its user (the transferee).

 While knowledge transfer requires an agreement between the people involved and

an active and planned procedure for disseminating and obtaining knowledge, knowledge

diffusion refers to spreading knowledge to a target group of users, typically freely and

passively (HAMERI, 1996). Additionally, a knowledge transfer is successful once the

recipient can apply the knowledge effectively in their surroundings—a requirement not

necessary for knowledge diffusion (RAMANATHAN, 2008). Conversely, knowledge

translation differentiates from knowledge transfer primarily because of its message

characteristics. Budgen, Kitchenham, and Brereton borrowed the knowledge translation

concept from medicine to SE. It is defined as "the exchange, synthesis and ethically-sound

application of knowledge – within a complex system of interactions between researchers

and users – to accelerate the capture of the benefits of research through better quality

software and software development processes" (BUDGEN, KITCHENHAM, and

BRERETON, 2013). In medicine and SE, the authors advocate for the message to be

quality assessed, synthesized, and aggregated before its transfer to reduce bias from

individual works. Thus, a solution for knowledge translation in SE should consider all

steps among gathering knowledge until its selection for use.

 The knowledge exchange flow can happen from research to research, from

practice to practice, from practice to research, and from research to practice. In each of

these scenarios, there are different types of knowledge and efforts in taking the knowledge

from the producer to its user. While analyzing a knowledge flow, one of the most

important things to identify is who (producer or user) will take knowledge from one side

to the other. The knowledge flow related to taking scientific knowledge from research to

practice (Figure 1) and the knowledge flow related to taking practical knowledge from

practice to research (Figure 2) are the flows under the focus of this research work. This

last flow is important because we must first understand what practitioners need so that

the scientific knowledge produced meets their expectations before its translation, transfer,

or even diffusion to practice.

Figure 1. Research-practice knowledge flows – pulling, pushing, and exchange
efforts involved

Figure 2. Practice-research knowledge flows – pulling, pushing, and exchange
efforts involved

2.2. Research Questions and Methodology

Upon the motivation, problem, and context, a series of studies were carried out to

investigate the following primary research question:

PRQ: What to consider while planning, executing, and reporting empirical studies in

software engineering to reach practitioners?

 To better organize the investigation, the following secondary research questions

were stated:

SRQ1: What are the problems faced by those who search for and use SE scientific

evidence in practice?

SRQ2: What are the practitioners' information needs that can be used to guide

practical research on SE?

 As for the methodology chosen to support this research, the scientific knowledge

engineering approach (SANTOS and TRAVASSOS, 2016) was selected because it suits

the need for knowledge structure required for this type of work. The next sections present

the research findings trying to answer the secondary research questions while following

the methodology described in (SANTOS and TRAVASSOS, 2016).

 The findings will be organized into four assumptions related to the main reasons

for intended users do not use a piece of knowledge (BENNETT and JESSANI, 2011):

(i) they do not know the information exists or what action to take in its regard;

(ii) they do not understand the information; what it means, and why it is

essential;

(iii) they do not care and see the information as irrelevant, not beneficial to their

agenda;

(iv) they do not agree and think the information is misguided or false.

3. Challenges to Taking Scientific Knowledge to Practice

We conducted two studies to see if SE practitioners do not use scientific evidence because

they do not know its existence and/or because they do not understand it. The first study

investigates the challenges and pitfalls in gathering SE scientific evidence. The second

study is a family of studies examining difficulties in applying SE knowledge to build

software technologies. The conclusions of these investigations will provide means to

respond to SRQ1.

3.1. Challenges and Pitfalls of Surveying Scientific Knowledge in SE

We conducted an exploratory study to learn more about the challenges and pitfalls of

surveying scientific knowledge in SE. This study evaluated the design and findings of

seven systematic literature reviews (SLR) that addressed the same research issue and were

carried out by teams of beginner researchers with similar backgrounds (who have a little

more expertise than practitioners in empirical methodology). We pinpointed the major

problems that led to the seven SLR plans and reports showing surprising variances. The

pitfalls also included pointers for recognizing challenges in SE that can obstruct

practitioners' attempts to find scientific information. While details can be found in

(RIBEIRO, MASSOLLAR, and TRAVASSOS, 2018), the planning and results of this

exploratory investigation are summarized next.

Planning Overview:

 Students from the experimental software engineering course at COPPE/UFRJ

(2010 and 2012) were called to participate in this exploratory study. They were given

lectures on subjects relating to primary and secondary studies in SE and were required to

complete several assignments, including developing an SLR research protocol, carrying

it out, and reporting the findings. The students (seven D.Sc. and 14 M.Sc.) were organized

into seven groups of three, balancing the amount of D.Sc. and M.Sc. among them and

assuring the existence of at least one practitioner in each team. The participants were

graduate students in their first year, and none had previous knowledge of experimental

methods before the course.

 The investigation of the SLRs focused on the quality of use cases, having the

following research question "Which quality attributes (and measurements used to

evaluate such attributes) have been empirically studied for use cases?" The teams were

given an initial SLR research protocol with this information and other details related to

(i) the search engines to be used; (ii) the inclusion and exclusion criteria; (iii) the initial

search terms to support the search string construction; and (iv) ideas for information to

be collected from the scientific productions.

 The teams should finish the protocol filling within two months, carry out the SLR

following their plans, and deliver the findings (quality attributes for use cases). Although

neither the research question nor the search engines should be changed, they were advised

to modify other parts of the protocol following their understanding of the research topic

and question.

 The comparison of SLR research techniques and reports was done using Jaccard

and Kappa coefficients, and the study covered the usage of search string terms, returned,

excluded, and included articles, as well as quality attributes for use cases. Results were

anticipated to be similar because the teams underwent the identical initial study protocol

and training. Whether or not this was the case, our goal was to pinpoint the likely causes

of the discrepancies.

Results Overview:

 There is a clear difference between the seven SLRs' plans and findings. For

instance, the Black team chose 11 terms, while the Purple team chose 215 terms, and the

returned papers ranged from 157 papers in the Pink search to 661 papers in the Black

search. The number of quality attributes did not change as much in any case.

 We expected more similarities than what we saw. Rarely did the two teams'

similarities in the search keywords and returned papers exceed 18% and 12%,

respectively. Even though the agreement between SLRs was more related to the articles,

a pair of teams agreed to exclude than agreed to include to extract information. Even when

all teams in the comparison used the same selection of papers, no two teams' similarities

to the reported quality attribute for use cases were 100% identical.

Discussion:

 The SLR takes much time to complete. Therefore, two months was not long

enough to get better outcomes. The biggest obstacles to SLRs include choosing papers,

searching databases, and extracting data (CARVER et al., 2013). While this is true,

evidence-based SE is advised to be used in software development environments, and two

months can be seen in many cases as a long-time frame for performing a software

technology adoption decision in practice.

 The differences and difficulties encountered by the teams while conducting SLRs

in SE can be attributed to six key causes, they are the lack of (i) experience in the

investigated topic; (ii) experience in the research method; (iii) a standard terminology

regarding use cases, requirements, and quality attributes; (iv) clearness and completeness

of scientific papers; (v) verification procedures to support following an SLR process; (vi)

commitment or interest in the research topic.

 This study's findings allow us to conclude that even if practitioners could search

for scientific knowledge less methodically than students, they would still encounter

almost all the same difficulties when doing so. Students had a slight advantage over

practitioners in terms of their knowledge of research methodology. It implies that finding

the information practitioners seek in research productions is not simple. The situation

worsens because most research journals are not free or open access, and the open science

movement is still in its infancy (MENDEZ et al., 2020). It leads to the conclusion that

SE practitioners might not know specific scientific knowledge exists and should not try to

take scientific knowledge from research to practice.

3.2. Challenges and Barriers to Understanding and Using Scientific

Knowledge in SE

We saw a chance to look more closely at the challenges associated with using evidence

to develop a workable solution to a real-world issue, and this investigation allowed us to

uncover several barriers and challenges with how scientific knowledge is perceived and

applied in SE. While details can be found in (RIBEIRO and TRAVASSOS, 2018) and

(RIBEIRO, SANTOS, and TRAVASSOS, Accepted for Publication in 2023), the

planning and results of a literature review and a family of studies and their aggregation

are summarized next.

Structured Review Overview:

 Using the Scopus engine, we conducted a structured literature review, assessed

the returning papers, and retrieved the data from the accepted ones. Our goal was to gather

data about the impact of source code quality attributes on source code readability and

comprehensibility, and that would support the construction of coding guidelines to be

used in a software organization. In addition, we intended to identify any data that would

help determine the causes of evidence contradictions identified in initial returned works

so that we could better assemble the software technology at the end.

 The effects of 13 source code attributes on the readability and comprehension of

source code were extracted from the accepted papers. Each attribute had at least one

measuring procedure being reported in the accepted works, resulting in 94 measurement

procedures (either qualitative or quantitative). Five out of 13 presented contradictory

evidence, not necessarily concerning the same measurement procedure. We conjectured

that two main reasons could explain the encountered differences in effects caused by the

same source code attribute: (i) the use of different concepts regarding source code reading

and comprehension throughout the primary studies; (ii) the existence of unknown context

variables to moderate or mediate the cause-effect relationships.

 It took time to locate the reasons for the contradictory findings from the scientific

articles and it was even more challenging to combine the results to provide a general

conclusion and build the coding guidelines. Most studies utilized the terms "readability"

and "comprehensibility" interchangeably, which was evident, in particular, in the many

measuring procedures employed to identify these desirable qualities in the source code.

 While only a few studies attempted to explain the observed phenomenon using

contextual data, most of them hypothesized that programming experience plays a

significant role when interpreting the impact of source code attributes on source code

readability/comprehensibility.

Family of Studies and their Aggregation Overview:

 This fact motivated us to plan, carry out, analyze, and combine three local

empirical studies on the effect of the presence of comments, indentation spacing,

identifiers length, and code size on source code readability and comprehensibility, taking

stratified results according to programming experience (novices and experienced

programmers) into consideration. The independent examination of expertise was an effort

to pinpoint potential causes for the discrepancies in the technical literature and,

concurrently, some pointers on the crucial data that researchers must disclose to support

comprehension and application of research findings.

 The empirical studies were set up to be conducted in person in the classroom. In

the three studies – each with a different group of people from computer courses – the

participants received general explanations of source code quality from the perspective of

readability and comprehensibility, discriminating against these two concepts. The

characterization form asked about software development experience, including code

guidelines, writing, review, debugging, correction, and maintenance. For the stratification

by novices and experienced, we decided to use the students' self-reported experiences (as

recommended by Siegmund et al. (SIEGMUND et al., 2014)) in the different experience

dimensions captured in the Likert scale (ranging from 0 – no experience to 5 – vast

experience).

 The results of all three empirical studies were analyzed independently and in their

aggregation form, considering results from novices separately from experienced

programmers. The three studies collected quantitative and qualitative data from 66

participants regarding their opinions on reading and understanding Python snippets.

 Although the quantitative analysis presents statistical significance related to the

comprehensibility of commented source codes and the readability of long identifiers, it

does not reveal any information that can contribute to solving the contradictions in the

technical literature. Moreover, the data analysis did not support our initial assumption that

experience could explain the inconsistencies in the technical literature since the results

(especially the aggregated ones) are similar for studies with novices and experienced

ones.

Discussion:

 Even after conducting a family of studies and combining their findings based on

the conjectured theories from the initial works, we could not pinpoint the causes of the

contradictory results, making it difficult to comprehend the topic from the combination

of the findings. Developing evidence-based software technology to enhance source code

quality regarding its readability and comprehensibility is difficult. Many other SE

subjects might face this same problem.

 The difficulties encountered while trying to use scientific knowledge to build

software technology can be attributed to five fundamental causes, they are the lack of (i)

standard presentation of the information in the papers; (ii) standard terminology for SE;

(iii) theoretical studies in SE; (iv) guidance on reporting measurement procedures and

contextual information; (v) a repository for knowledge sharing.

 Performing rigorous scientific procedures can be tricky, even for those

experienced in research methods. The amount of reasoning required to extract, interpret,

and synthesize useful scientific knowledge from scientific productions in a problem-

solving situation is significant, which should not happen if scientific productions were

intended to provide information to practitioners. It leads to the conclusion that SE

practitioners might not understand scientific reports and that scientific articles might not

be the best way to present information to them.

4. Understanding the Information Needs of SE Practitioners

To identify if SE practitioners do not use scientific evidence because they see the

information as irrelevant and/or disagree with it, we analyzed works on the relevance and

credibility of SE knowledge to practice. In addition, we carried out two investigations on

SE practical questions and answers from an important Q&A forum of SE intending to

identify information that seems relevant and credible to SE practitioners. The conclusions

of these investigations will provide means to respond to SRQ2.

4.1. Scientific Knowledge Relevance and Credibility to Practice

Several works have investigated the relevance of SE scientific knowledge to practitioners.

Practitioners believe research produces interesting ideas/proposals, but scientific

knowledge is not among their main needs. The fact that they measure a scientific

production's relevance (or even credibility) based on whether a practitioner participated

in it says a lot about their perception of research produced in labs. The negative comments

on research works are usually related to the lack of necessity of it to practice, the lack of

fitness to practice, the difficulty in applying it in practice, the real impact of it to practice,

and the differences in the context of its application to what exists in practice. In summary,

the problem relevance, the solution utility, the solution impact, and the source of the

data/results (whether from practitioners or not) are important to practitioners when

assessing scientific knowledge as relevant and credible.

 To understand what is considered relevant and credible to practitioners in their

daily activities, we conducted two investigations on Stack Exchange questions and

answers, as we summarize next. Our main goal with these studies was to identify

information important to guide researchers while performing and reporting empirical

studies in SE.

4.2. Thematic Analysis of Questions Pattern from Stack Exchange

Stack Exchange is a platform offering a collection of 176 forums for Q&A about various

topics. Its main forum, Stack Overflow, has more than 21,286,479 questions and

31,692,495 answers on several topics related to software development and maintenance,

especially programming. Certainly, it is unfeasible to manually analyze all the questions

and their answers from any Stack Exchange forum. Therefore, we had to plan a strategy

for narrowing the number of questions/answers that should be analyzed without

hampering the study's main goal.

 The goal of the thematic analysis of questions from Stack Exchange was to

identify relevant SE topics and related questions according to practitioners. To narrow

the number of questions to analyze, we used a set of strategies to appraise relevance and

sample the questions. From our point of view, a question is relevant whenever (i) it

matches the forum's expectations; (ii) it is about one of the most important topics of the

forum; (iii) practitioners like it, and (iv) practitioners try to answer it. We understand that

there are other perspectives of relevance, and a single question might represent an

important issue to be addressed by research. However, this strategy was used to narrow

down the number of questions to analyze. After identifying relevant questions from

specific important forums, we sampled them, leading to 380 questions to perform a

thematic analysis.

 As a summary of the results from this analysis, the concepts we identified from

the relevant questions are mostly related to the phases of design and coding of the

software life cycle: programming languages, software architecture and design,

programming practices, databases, software testing, object-oriented development, and

web software development. Also, while analyzing the questions, we created meta-

questions based on initial research questions formulated for each original question. It

helped us understand the main structure of practical questions and their relation to

research questions on the topic. We came across 25 meta-questions. We identified that

some questions were expecting answers that would describe an intervention. Others were

expecting some comparison between the two interventions. We concluded that each meta-

question could be mapped to research purposes presented in works like (BASILI, SELBY,

and HUTCHENS, 1986) and (WOHLIN et al., 2012). Characterization, comparison,

evaluation, and understanding were the purposes we identified from the final list of meta-

questions. We identified 20 codes related to interventions/comparisons in forums'

questions related to development and methodology (framework, method, paradigm,

practice, tool, among others) and product (algorithm, programming language, and others).

As for the common mentioned expected outcomes, all product quality characteristics from

(ISO/IEC, 2011) appeared in the questions. Most practitioners seek support in achieving

functional suitability and performance efficiency. Regarding quality in use, the questions

mention effectiveness, efficiency, and satisfaction. The analysis raised one new outcome

not related to ISO: competitiveness in terms of cost/price and throughput/velocity.

4.3. Thematic Analysis of Answers Pattern from Stack Exchange

The thematic analysis of answers from Stack Exchange aimed to identify contextual

information practitioners uses while answering practical questions and the common way

to communicate practical knowledge in these forums. We decided to analyze relevant

answers from Stack Exchange, like what was performed with the questions. Apart from

the information, we analyzed the types of arguments used in the answers that might make

the moderation of the forums accept them, and the community score them highly. A total

of 141 answers were analyzed.

 As a summary of the results from this analysis, we identified a list of contextual

information presented in the answers related to the organization (size of the team,

throughput, velocity, and others), product (system type, system complexity, and others),

stakeholder (experience), development and methodology (development practices, and

others), and business and market (cost/price). Concerning the arguments, we noticed that

the arguments that the answers creators provide are usually based on personal

experience/opinions. Thus, the argumentation schemes presented along with the answers

are basically: an argument based on cases, an argument from analogy, an argument from

alternative, an argument from example, an argument from expert opinion, an argument

from popular opinion, a statement from widespread practice, and practical reasoning.

 As for the style of the answers, all are presented in written format, and very few

provide images or drawings along with them. However, many users provide external

information (links) that complement their answers. Also, the answers are usually

organized in sections and/or in items/numbers, and the creators of the answers take

advantage of format styling (e.g., bold, italic, underline, and font size) to emphasize

important information.

 The primary distinction between practitioners' and academics' responses is the

candor of the presented data. There is a concern with giving the complete technique used

in research presentations to make a study repeatable and fully disclose the findings.

However, practitioners are not required to explain how they came to possess the

knowledge they deliver. Additionally, practitioners give far more direct counsel, possibly

because there is little concern over making forceful claims.

 Although the answers are specific, they may or may not relate to the question's

stated context. Highly scored responses typically discuss how a specific intervention is

used in several circumstances, describing the various outcomes and side effects that can

occur in each. The practitioners' own real-world experiences typically support the

statements. Undoubtedly, the community attests to its expertise in the subject under

debate, typically demonstrated by the examples given in the answers.

 Although we are not expected to come up with the same solutions as practitioners,

we may learn from them, particularly in how they convey their findings. Additionally,

conducting context-driven studies focusing on somewhat varied settings is an intriguing

method for offering comprehensive and all-encompassing answers. It challenges the idea

that all relevant contextual information must be reported for a study to be complete.

Rather, many different settings should be assembled to study a single intervention.

5. Support for Researching Real SE Issues

We determined the value of SE topics and information to practitioners through two studies

in the Stack Exchange community. Additionally, we could pinpoint the crucial data,

categorization of the arguments, and modes of presentation used by practitioners in

acceptable answers to practical questions. Our core premise is that for knowledge

dissemination, transfer, and even translation to practice to be successful, researchers must

incorporate into their research efforts a means of obtaining practical issues from practice,

researching them, and relaying the findings to practitioners' channels of communication.

 A total of 8 heuristics were proposed to guide researchers in researching practical

issues and reporting scientific results using repositories of SE practical knowledge. The

heuristics were created based on the studies' execution and conclusions throughout this

doctoral research. The heuristics are related to problem identification, research question

formulation, study design, and publication of the results. In some sense, along with the

studies’ results, they are meant to answer the main research question of this work (PRQ).

An overview of them can be seen in Figure 3.

Figure 3. The eight practical research heuristics overview

 Some heuristics can be time-consuming and error-prone to apply when using

Q&A forums. After conducting two observational studies with little computing support

to assess the heuristics, we concluded that a computational infrastructure would be

beneficial to use Q&A forums as a source of real-world knowledge to support research

works.

 The heuristics formulated was the primary source of requirements for building a

computational infrastructure. In addition, the tool considers part of the data dumps

provided continuously by Stack Exchange and offers specific functionalities for acquiring

practical knowledge that can support research. Once we had the availability of the data

and a tool to support handling it, we decided to add natural language processing to support

the application of some of the heuristics presented.

6. Final Remarks

The expectation that practitioners can invest effort in software development to search and

use scientific knowledge from its sources is unrealistic. They are not trained in scientific

methods and are not used to following the rigorous process required in research

(JURISTO and MORENO, 2001). In addition, practitioners and researchers see software

development problems and solutions differently (GAROUSI, PETERSEN, and OZKAN,

2016).

 Gathering everyday SE concerns from practice and putting effort into getting

scientific productions to practitioners in a form they can easily access, understand, and

evaluate are better ways to achieve some success in having scientific knowledge

employed in practice. The key to success in this situation is knowing what to transfer,

where to deliver it, and how to present it.

 This doctorate research presented several insights on transferring SE scientific

knowledge to practice that can be used to guide future works intending to overcome

difficulties in collaborations between research and practice or even to improve the

planning, execution, and reporting of empirical studies in SE. These insights led us to

formulate heuristics to support identifying researchable topics and questions from SE

Q&A forums and transforming practical questions into research questions, research

purposes, and search strings to guide context-driven research on practical issues that can

be reported directly to practitioners. More details on the work can be found in (RIBEIRO,

2022).

7. Acknowledgements

The authors thank CAPES and CNPq for supporting this research. Prof. Travassos is a

CNPq Researcher and CNE FAPERJ.

8. References

AKIYAMA, F. An example of software system debugging. Proceedings of IFIP

Congress. Ljubljana: North-Holland. 1971. p. 353-359.

ATWOOD, J.; SPOLSKY, J. Stack Overflow, 2008. Available at:

<https://stackoverflow.com/>. Access Date: January 2022.

BASILI, V. R.; SELBY, R. W.; HUTCHENS, D. H. Experimentation in software

engineering. Transactions on Software Engineering, New York, SE-12, n. 7, July

1986. 733-743. DOI: 10.1109/ICSE.1996.493439.

BECK, K.; CUNNINGHAM, W. Using pattern languages for object-oriented

programs. Proceedings of the Workshop on Specification and Design for Object-

Oriented Programming. Florida: ACM. 1987.

BENNETT, G.; JESSANI, N. The knowledge translation toolkit - bridging the know-

do gap: a resource for researchers. New Delhi: Sage, 2011. 312 p.

BUDGEN, D.; KITCHENHAM, B.; BRERETON, P. The case for knowledge

translation. Proceedings of the International Symposium on Empirical Software

Engineering and Measurement. Baltimore: IEEE. 2013. p. 263-266. DOI:

10.1109/ESEM.2013.41.

CARVER, J. C. et al. Identifying barriers to the systematic literature. Proceedings of

the International Symposium on Empirical Software Engineering and Measurement.

Baltimore: IEEE. 2013. p. 203-213. DOI: 10.1109/ESEM.2013.28.

DAHL, O.-J. The roots of object-oriented programming: the Simula language. Software

Pioneers, Berlin, 2002. 78-90. DOI: 10.1007/978-3-642-59412-0_6.

DYBÅ, T.; KITCHENHAM, B.; JøRGENSEN, M. Evidence-based software engineering

for practitioners. IEEE Software, 22, n. 1, 10 January 2005. 58-65.

GAMMA, E. et al. Design patterns: elements of reusable object-oriented software. 1st.

ed. California: Addison-Wesley, 1994. 416 p.

GAROUSI, V.; PETERSEN, K.; OZKAN, B. Challenges and best practices in industry-

academia collaborations in software engineering: a systematic literature review.

Information and Software Technology, Amsterdam, 79, November 2016. 106-127.

DOI: 10.1016/j.infsof.2016.07.006.

HALSTEAD, M. H. Elements of Software Science. New York: North Holland, 1977.

HAMERI, A.-P. Technology-transfer between basic research and industry.

Technovation, Amsterdam, 16, n. 2, February 1996. 51-57, 91-92. DOI:

10.1016/0166-4972(95)00030-5.

HEVNER, A.; CHATTERJEE, S. Design research in information systems: theory and

practice. New York: Springer, 2010. DOI: 10.1007/978-1-4419-5653-8.

ISO/IEC. ISO/IEC 25010 - Software engineering - Software product quality

requirements and evaluation (SQuaRE) - system and software quality models.

Geneva, p. 34. 2011.

JEDLITSCHKA, A.; JURISTO, N.; ROMBACH, D. Reporting experiments to satisfy

professionals' information needs. Empirical Software Engineering, New York, 19,

n. 6, December 2014. 1921–1955. DOI: 10.1007/s10664-013-9268-6.

JURISTO, N.; MORENO, A. M. Basics of software engineering experimentation. 1.

ed. New York: Springer, 2001. 396 p. DOI: 10.1007/978-1-4757-3304-4.

KAHLE, B.; GILLIAT, B. Alexa Intenet, 1996. Available at:

<https://www.alexa.com/siteinfo/stackoverflow.com>. Access Date: January 2022.

MCCABE, T. J. A complexity measure. Transactions on Software Engineering, New

York, SE-2, n. 4, December 1976. 308–320. DOI: 10.1109/tse.1976.233837.

MENDEZ, D. et al. Open science in software engineering. In: FELDERER, M.;

TRAVASSOS, G. H. Contemporary empirical methods in software engineering.

Cham: Springer, 2020. p. 477-501. DOI: 10.1007/978-3-030-32489-6.

PFLEEGER, S. L.; KITCHENHAM, B. A. Principles of survey research - Part 1: turning

lemons into lemonade. ACM SIGSOFT Software Engineering Notes, New York,

26, n. 6, November 2001. 16-18. DOI: 10.1145/505532.505535.

RAMANATHAN, K. An overview of technology transfer and technology transfer

models. Asian and Pacific Centre for Transfer of Technology. Paris, p. 28. 2008.

RIBEIRO, T. Insights on Transferring Software Engineering Scientific Knowledge

to Practice. DSc Thesis: COPPE / Universidade Federal do Rio de Janeiro, 2022. 179

p.

RIBEIRO, T. V.; MASSOLLAR, J.; TRAVASSOS, G. H. Challenges and pitfalls on

surveying evidence in the software engineering technical literature: An exploratory

study with novices. Empirical Software Engineering, New York, 23, June 2018.

1594–1663. Available at: <http://rdcu.be/xNku>. DOI: 10.1007/s10664-017-9556-7.

RIBEIRO, T. V.; SANTOS, P. S. M. D.; TRAVASSOS, G. H. On the investigation of

empirical contradictions - aggregated results of local studies on readability and

comprehensibility of source code. Empirical Software Engineering, New York,

Accepted for Publication in 2023.

RIBEIRO, T. V.; TRAVASSOS, G. H. Attributes influencing the reading and

comprehension of source code – discussing contradictory evidence. CLEI Electronic

Journal, 21, n. 1, April 2018. 1-33. DOI: 10.19153/cleiej.21.1.4.

SANTOS, P. S. M. D.; TRAVASSOS, G. H. Scientific knowledge engineering: a

conceptual delineation and overview of the state of the art. The Knowledge

Engineering Review, Cambridge, 31, n. 2, March 2016. 167-199. DOI:

10.1017/S0269888916000011.

SHARP, H.; DE SOUZA, C.; DITTRICH, Y. Using ethnographic methods in software

engineering research. Proceedings of the International Conference on Software

Engineering. Cape Town: IEEE. 2010. p. 491-492. DOI: 10.1145/1810295.1810445.

SIEGMUND, J. et al. Measuring and modeling programming experience. Empirical

Software Engineering, New York, 19, n. 5, December 2014. 1299-1334. DOI:

10.1007/s10664-013-9286-4.

SJøBERG, D. I. K.; DYBÅ, T.; JøRGESEN, M. The future of empirical methods in

software engineering research. Proceedings of the Future of Software Engineering

Symposium. Minneapolis: IEEE. 2007. p. 358-378. DOI: 10.1109/fose.2007.30.

STRAUS, S. E.; TETROE, J.; GRAHAM, I. D. Knowledge translation in health care:

moving from evidence to practice. Hoboken: Wiley, 2013. DOI:

10.1002/9781118413555.

WOHLIN, C. et al. Experimentation in software engineering. Heidelberg: Springer

Berlin, 2012. 236 p. DOI: 10.1007/978-3-642-29044-2.

