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Abstract. Refactoring is a non-trivial maintenance activity. Developers spend
time and effort refactoring code to remove structural problems, i.e., code smells.
Recent studies indicated that developers often apply composite refactoring
(composite, for short), i.e., two or more interrelated refactorings. However,
previous studies revealed that only 10% of composite refactorings in practice
are considered complete, i.e., those fully removing code smells. However, the
literature is scarce to catalog the most common complete composites and their
side effects. Aim: To fill this gap, we performed a mixed-method study to create
an enhanced catalog of complete composites derived from practice knowledge.
Method: We empirically collected the most common complete composites and
their side effects applied in 42 open and closed-source projects, generating a
catalog of composite recommendations. Then, our catalog was evaluated by 21
software developers. Results: The derived catalog includes four recommendati-
ons to fully remove multiple code smells, minimizing possible side effects. The
evaluation indicates that 85% of developers reported that their own solutions
could have worse side effects without our recommendations, increasing the ef-
fort to remove smells critical to them. Conclusion: Our catalog can guide both
developers and researchers on how to better combine refactorings in composites
that effectively reduce side effects in the practice.

Resumo. A refatoração é uma atividade não-trivial de manutenção de software.
Desenvolvedores gastam muito tempo e esforço refatorando o código para re-
mover problemas estruturais, tais como anomalias de código. Estudos recentes
indicaram que desenvolvedores frequentemente aplicam refatoração composta,
ou seja, duas ou mais refatorações inter-relacionadas. No entanto, estudos an-
teriores revelaram que apenas 10% das refatorações compostas em projetos de
software são consideradas completas, ou seja, aquelas que removem comple-
tamente as anomalies de código. Ademais, a literatura é escassa quanto ao
catálogo de refatorações completas mais comuns e seus efeitos colaterais. Ob-
jetivo: Para preencher essas lacunas, realizamos um estudo de métodos mistos
para criar um catálogo de refatorações compostas completas derivadas do co-
nhecimento prático. Método: Coletamos empiricamente as refatorações com-
pletas mais comuns e seus efeitos colaterais aplicados em 42 projetos de código
aberto e fechado, gerando um catálogo de recomendações de refatorações com-



postas completas. Em seguida, as recomendações do nosso catálogo foram ava-
liadas por 21 desenvolvedores de software. Resultados: O catálogo derivado
inclui quatro recomendações para remover completamente múltiplas anoma-
lias de código, minimizando possı́veis efeitos colaterais. A avaliação indica
que 85% dos desenvolvedores relataram que suas próprias soluções poderiam
ter efeitos colaterais piores sem nossas recomendações, aumentando o esforço
para remover anomalias de código. Conclusão: Nosso catálogo pode orien-
tar desenvolvedores e pesquisadores sobre como combinar melhor refatorações
compostas que reduzam efetivamente os efeitos colaterais na prática.

1. Introduction
Developing software projects with high quality is the goal of every company [Galin
2018, Laporte and April 2018]. However, due to extensive maintenance and evolution in
those projects, the internal software quality usually degrades [Uchôa et al. 2020, Baabad
et al. 2020, Oizumi et al. 2019], generating poor code structures, like code smells [Fo-
wler 1999]. Code refactoring is a single code transformation that intends to remove code
smells [Fowler 1999]. A composite refactoring (composite, for short), consists of two
or more interrelated single refactorings [Sousa et al. 2020, Bibiano et al. 2020, Bibiano
et al. 2023]. The application of composites is a complex and error-prone task, as the
smelly code must often be modified in multiple parts by different refactoring types com-
bined [Sousa et al. 2020]. To make matters worse, studies have indicated that composites
are generally applied manually [Murphy-Hill et al. 2012, Kim et al. 2014] and eventu-
ally combined with other code changes, e.g, the addition of features. [Murphy-Hill et al.
2012, Sousa et al. 2020]. Yet, studies indicate that only 10% of composites could remove
code smells entirely [Sousa et al. 2020, Bibiano et al. 2019]. In the other words, deve-
lopers spend time and effort applying composite refactorings, but rarely composites fully
remove code smells. We refer here to a composite that fully remove smells as a complete
composite refactoring [Bibiano et al. 2021, Bibiano et al. 2023].

However, the existing knowledge about complete composites is limited. The first
major limitation is that albeit some studies have recommended a few complete compo-
sites [Sousa et al. 2020, Brito et al. 2022], these recommendations are both not known
to be effective in practice and not structured in comprehensive catalogs. Effective, well-
structured refactoring catalogs are essential to guide developers (e.g., to effectively re-
move smells) and tool builders (e.g., to build tools that recommend effective refactorings).
The second major limitation is that previous studies have only relied on a restricted num-
ber of refactoring types to propose their recommendations. Finally, the third major limita-
tion is that previous studies did not investigate and alert developers about the side effects
of the (existing and new) refactoring recommendations.

The goal of our study (reported here and not published elsewhere) is to enhance
recommendations of composite refactoring based on the practice and properly support
developers when applying refactorings. This paper is a shortened version of Chapter 5
of the PhD thesis of the first author. In this study, we aimed at extending and adding to
existing catalogs of complete composite refactorings that overcome the limitations men-
tioned above. We also aimed at systematically assessing our enhanced recommendations
with developers. To achieve this, we conducted a mixed-method (i.e., repository mining
+ interviews) and large-scale study on 42 open and closed-source Java projects. From the



projects, we mined 31,066 composites (composed of 250,172 single refactorings) from
which we identified 1,397 complete composites that are used to remove 19 different types
of code smells. Then, our enhanced catalog was shown and used by 21 developers during
interviews. We identified the most frequent combinations within complete composites ap-
plied in the practice and the side effects of those complete composites. Our main results
are summarized as follows.

1. Developers frequently combine Extract Method with fine-grained refactorings,
such as changes on parameter types to fully remove Long Methods, Feature Envies, and
Duplicated Code. Interestingly, we observed that 45% of these composites introduced
Brain Methods as a side effect because many variables were modified. Based on that, we
empirically identified that complete composites formed of Extract Methods and Change
Parameter Types can fully solve 49% of those same smells without introducing Brain
Methods.

2. Extract Methods and Move Methods are commonly recommended to remove
Feature Envy. However, we observed that 42% of those complete composites tend to
introduce Intensive Couplings, which is not reported in existing recommendations. Thus,
we identified two recommendations to alleviate the introduction of Intensive Couplings,
while explicitly describing this side effect in our enhanced catalog.

3. All 21 developers agreed with our recommendations. We observed that seven
(33%) developers were unaware of side effects while proposing their solutions to remove
code smells. After the proposal of their solutions, 18 (85%) developers reported that
their refactoring solutions could lead to worse side effects without our recommendations.
These results confirm the need to alert developers about the side effects of composite
refactorings.

Our study contributes to the practice by providing a catalog with concrete recom-
mendations to guide developers to apply complete composites. Also, our catalog descri-
bes potential side effects, allowing developers to make more informed decisions on how
to refactor their code. Finally, our findings can be a source of information for tool builders
and researchers to create tools that adhere to the actual practice.

2. Background and Problem Statement

This section describes the main concepts and existing limitations regarding the complete-
ness of composite refactorings.

2.1. Composite Refactoring (or Composite)

A single refactoring rarely removes a code smell [Cedrim et al. 2017]. Developers need to
apply composite refactorings to eliminate several code smell types [Szőke et al. 2017]. A
composite refactoring is a set of interrelated refactorings, defined as c = {r1, r2, ...rn},
where each r is a single refactoring and i is an identifier for each refactoring ap-
plied [Sousa et al. 2020]. A composite c can be formed of the same refactoring type,
or a combination of different refactoring types [Bibiano et al. 2019, Bibiano and Garcia
2020, Sousa et al. 2020, Brito et al. 2019, Tenorio et al. 2019, Cinnéide and Nixon 2000].

Due to the complexity of identifying whether a refactoring is part of a composite,
recent studies proposed heuristics to detect composites [Bibiano et al. 2019, Sousa et al.



2020]. Several studies [Bibiano et al. 2020, Oizumi et al. 2020, Brito et al. 2019] have
used the range-based heuristic [Sousa et al. 2020] for composite detection. The heuristic
considers a composite as those refactorings applied by the same developer and affecting
the same code elements (i.e., the refactoring range). In that way, as the same developer
refactor the same code elements, we can consider that this developer has a common goal
to refactor that set of code elements. The reliability of this heuristic was demonstrated
in [Sousa et al. 2020, Bibiano et al. 2020, Bibiano et al. 2021].

Different studies indicate that developers often apply composites manually [Bibi-
ano et al. 2019, Sousa et al. 2020, Szőke et al. 2017]. Besides, we found evidence that
composites frequently result in undesirable side effects [Bibiano et al. 2019, Sousa et al.
2020]. Therefore, having in-depth knowledge about composites is needed to support de-
velopers when applying refactoring. However, we observe that (i) there is little knowledge
on the best alternatives of composites for effectively removing code smells, and (ii) there
is a misguidance of automated support for developers applying composites. Aiming at
fulfilling these gaps, we investigated the completeness of composite refactorings.

2.2. Completeness of Composite Refactorings

A previous study recommend composites to remove a particular type of code smell [Sousa
et al. 2020]. When a composite is recommended to remove one or more code smell types,
each code smell is considered a “target” of this composite. For example, a recent study
recommends applying Extract Method(s) combined with Move Method(s) to remove Fe-
ature Envy [Sousa et al. 2020]. Thus, the Feature Envy type is the target smell in such
cases. When the target smell is fully removed, we can consider that the composite re-
factoring is complete on the removal of the smell, otherwise the composite is incomplete.
Completeness of a composite refactoring (i.e., composite completeness) is a characteristic
given to those composites able to achieve the full removal of code smells [Bibiano et al.
2023], as defined as follows:

Completeness of composite refactoring: Considering ri as a single refactoring,
and c is a composite refactoring. For each ri ∈ c, ri touches in a code element
e, such as a method or/and class. We then have ∀e that has a target code smell
s, and TOTALBEFORE(s) is the number of all target code smells before the appli-
cation of a composite refactoring c, TOTALAFTER(s) is the number of all target
code smells after the application of c. A composite refactoring is complete when
TOTALAFTER(s) < TOTALBEFORE(s). Otherwise, an incomplete composite re-
factoring is when none code smell target was removed, thus TOTALAFTER(s) >=
TOTALBEFORE(s).

2.3. Fine-Grained Refactorings

A fine-grained refactoring (FGR), is a minor code transformation on variables or attribu-
tes. This transformation can be a change of variable type, a merge between two or more
variables. A refactoring of large granularity, or coarse-grained refactoring (CGR), is a
code transformation that involve method(s) or class(es). Common examples of CGR are
Extract Method, Move Method. In this study, we considered the term “coarse-grained” to
better align with the term “fine-grained”. Table 1 shows the refactoring types classified
in FGR and CGR. We used this classification of refactoring types because although there



are many fine-grained types of refactorings. We observed that fine-grained refactorings
were not investigated by previous studies that recommend complete composite refacto-
rings [Sousa et al. 2020, Brito et al. 2022].

Tabela 1. Classification of Refactoring Types

Fine-Grained
Refactoring (FGR)

Coarse-Grained
Refactoring (CGR)

Move Attribute Rename Variable Inline Method
Pull Up Attribute Rename Parameter Rename Method
Push Down Attribute Replace Variable Move Method
Rename Attribute Merge Variable Pull Up Method
Replace Attribute Change Return Type Push Down Method
Extract Attribute Change Parameter Type Extract Class
Merge Attribute Change Variable Type Extract Subclass
Split Attribute Merge Parameter Extract Superclass
Extract Variable Split Variable Move Class
Inline Variable Replace Variable With Attribute Rename Class
Parameterize Variable Extract Interface
Split Parameter Extract Method

Total: 22 Total: 12

2.4. Limitations of Existing Recommendations of Complete Composite Refactorings

Existing recommendations [Sousa et al. 2020, Brito et al. 2019, Bibiano et al. 2021]
are quite limited. First limitation, studies have recommended some complete composi-
tes [Sousa et al. 2020, Brito et al. 2022], but these recommendations are not structured
in comprehensive catalogs. Refactoring catalogs are useful to guide developers (e.g., to
effectively remove smells) and tool builders (e.g., to build tools that recommend effective
refactorings). Thus, it is important that a catalog describes complete composites that are
successful in practice. The knowledge empirically extracted from existing software pro-
jects can demonstrate to developers that it is possible to perform successful composites in
their routine. In addition, existing recommendations of complete composite refactorings
are limited [Sousa et al. 2020, Brito et al. 2022]. Second limitation, previous studies
investigated a restricted number of refactoring types to propose their recommendations,
but in the practice, developers can combine not previously investigated types of refacto-
rings. Third limitation, previous studies did not alert developers about the side effects of
the refactoring recommendations. Existing studies [Sousa et al. 2020, Brito et al. 2022]
recommend refactoring types like Extract Methods to remove Long Methods, but they did
not alert about possible side effects of this recommendation.

3. Study Settings

Our mixed-method study aims at assessing and enhancing recommendations of complete
composite refactorings. To accomplish such goal, we first propose the following research
questions.

RQ1: What are the most frequent refactorings in complete composites in prac-
tice? – RQ1 aims at identifying and analyzing the most frequent refactoring combinati-
ons in complete composites. We consider two aspects: (i) the frequency in which each
combination appears as a whole; and (ii) the fine-grained refactoring types that most ap-
pear in frequent complete composites, once these refactoring types were not investigated
by [Sousa et al. 2020, Brito et al. 2022].



RQ2: What are the side effects of the most frequent complete composites? – Com-
plementary to the previous research question, RQ2 aims at identifying the side effects of
the most frequent complete composites in terms of introduction, removal, and prevalence
of code smells. Additionally, we analyze the propagation of code smells, i.e., when an
existing code smell is moved to other parts of the source code. By answering RQ2, we can
understand the side effects of the most frequent complete composites. This understanding
is of paramount importance, otherwise, we may misguide developers on refactoring.

RQ3: To what extent are the recommendations of complete composite refactorings
perceived as useful for developers in practice? – RQ3 aims at providing and documen-
ting a catalog of recommendations of complete composites to guide the developers in their
preventive maintenance activities. To this end, we combine the empirical recommendati-
ons provided by prior studies [Sousa et al. 2020,Brito et al. 2022] and new ones extracted
from the knowledge obtained in the previous RQs. For that, we interviewed developers to
know how and when they would use those recommendations.

3.1. Study Steps and Procedures
Figure 1 illustrates our study steps and dataset. The replication package is available
in [Bibiano 2023b].

Figura 1. Study Steps

Step 1: Software Project Selection. We selected 42 software projects according
to the following criteria: (i) the software projects must be implemented using Java due to
the availability of robust tools for software analysis; (ii) the software projects must use Git
as the main version control system because state-of-the-art tools for refactoring detection
work on Git projects only; and (iii) the software projects must have been investigated by
at least one related study regarding refactoring [Brito et al. 2022, Brito et al. 2019, Sousa
et al. 2020]. This last criterion was considered because related studies have already
confirmed those software projects have occurrences of composite refactorings and code
smells.

Step 2: Single Refactoring Detection. For detecting single refactorings applied
on software projects, we used the RefMiner 2.0 tool [Tsantalis et al. 2020] due to its high
precision and recall levels (98% and 87%, respectively). This tool supports a total of 52
refactoring types [Tsantalis et al. 2018]. The tool identifies 52 refactoring types. We
focused on the 34 ones that are in the scope of our study (Table 1). These 34 refactoring
types are applied in the code scope of attributes, methods, classes, and the code smells
analyzed in this study can happen in that code scope.



Step 3: Composite Refactoring Computation. For the detection of composite
refactorings, we created a script written in Java to implement the range-based heuris-
tic [Sousa et al. 2020], described in Section 2.1. This heuristic fits well our study goal, as
it considers multiple code elements. Besides, the reliability of this heuristic was demons-
trated in [Bibiano et al. 2020, Sousa et al. 2020]. The heuristic script was developed in
Java. Two researchers tested and validated our script.

Step 4: Code Smell Detection. Similarly to the studies that proposed recom-
mendations of composites [Bibiano et al. 2019, Sousa et al. 2020], we used the Organic
tool [Oizumi et al. 2016] for detecting code smells in our study. Organic is able to detect
19 code smell types. The Organic tool uses detection strategies based on code metrics to
identify each type of code smell. These detection strategies have already been validated
by prior studies [Cedrim et al. 2017, Fernandes et al. 2017, Oizumi et al. 2016]. Besides,
this tool identifies types of code smells that involve multiple classes. The investigation of
the effect on code smells that are related to multiple classes is interesting because code
smells can be propagated between these classes while the existing code smells are remo-
ved.

Step 5: Complete Composite Computation. We focused on the complete com-
posites for removing 19 code smell types. We elaborated scripts written in Java to identify
when composites are complete, according to our definition of composite completeness
(Section 2.2). These scripts were tested and validated as detailed in Section 7.

Step 6: Complete Composite Analysis. Aiming to answer our RQ1, we need to
identify frequent combinations for composing complete composites. This identification
helps to collect combinations of refactoring types in composites that commonly obtai-
ned success to fully remove code smells. For the detection of frequent combinations,
we created scripts to group complete composites in types. We follow the definition of
composite types presented in [Bibiano et al. 2021]. We collected the frequent combi-
nations between groups. An example of that is when we have a group g1 of composite
types formed of g1=[Extract Method(s), Move Method(s), Change Return Type(s)], and
another group g2 = [Extract Method(s), Change Return Type(s)]. We can observe that the
combination c1=[Extract Method(s), Change Return Type(s)] is common between these
groups g1 and g2. In other words, the combination of Extract Method(s), Change Return
Type(s) are commonly applied when certain code smell types are fully removed. We then
collected the frequent combinations and what code smell types are often removed when
applied. We then extracted recommendations for our catalog [Bibiano 2023a] based on
these recurring combinations of complete composites.

Step 7: Side Effects Analysis. We collected the side effects, i.e., code smells
introduced, removed, and unaffected by the most frequent complete composites identi-
fied in the previous step. Then, three authors manually analyzed the effect of complete
composites. Additionally, we aimed to find the relation between the introduction of code
smells and the complete composites that removed the target code smell. We analyzed
the code, other code changes, commit messages, and pull request discussions for each
complete composite. This in-depth analysis allowed us to understand whether other code
changes could have introduced the code smell, and if developers are aware of these code
smells.



Step 8: Dataset Validation. We randomly selected a sample of 36 complete com-
posites from our dataset for validation. Six developers validated whether the composites
are complete for detected code smells. We provided a table for the developers with com-
posite data: refactoring types that form each composite, the project name that was applied
to the composite, the commits in which the composite was applied, the code element na-
mes that were touched for each composite, and code smells of these code elements before
and after the application of composite refactorings. Each developer had one week to eva-
luate six complete composites according to their availability. After that, two developers
evaluated six composites (the total of 12 composites), and four developers only had time
to evaluate four composites (the total of 16 composites), resulting in the evaluation of 28
composites. The developers identified that 24 out of 28 composites are complete for at
least one code smell detected.

Step 9: Interviews with Developers. We designed a semi-structured interview
to be conducted with the developers. We conducted a pilot of the interview with two
developers, aiming to identify opportunities to improve the interview design. After the
pilot, we interviewed 21 developers from different countries. These developers have a
median of nine years of development experience. We detail the interview procedures in
what follows.

Activity 1: Characterization and training session. We asked the participants to fill
out a Characterization Form to collect data about their refactoring development profile.
Next, the participants watched a training video (15 minutes) about the main concepts
about refactoring and code smells. The goal was reduce the bias by focusing on main
concepts used in this study.

Activity 2: Smell identification task. We asked participants to perform a code
smell identification task. We then presented a source code that contains one or more
code smell types from our dataset. Next, we explain the domain of the source code,
since the participants are not contributors to the source code under analysis (5 minutes).
We instructed participants to think-aloud about their code smell identification task, and
also asked participants to share their screens for observation purposes. Finally, we asked
participants to mention the code smells that were identified and justified why the code is
smelly (10 minutes).

Activity 3: Presentation of the code smells. We presented the smell definition and
examples of our catalog (5 minutes). We asked participants if they agree with the defini-
tion of the proposed code smells, and if the previous analyzed code elements (Activity 2)
contain these smells.

Activity 4: Presentation of the refactoring recommendations. We asked parti-
cipants to talk about solutions they would apply to remove code smell(s) identified in
Activity 2 (10 minutes). After that, we presented the refactoring recommendations of
our catalog. We explained the definition, mechanics, and examples of composite refac-
torings that can be applied to remove these code smells. The developers could choose
between their solution or the solution of our catalog. Finally, we presented the possible
side effects of our refactoring recommendations, asking the participants to explain if they
thought about them when they selected the refactoring recommendations.

Activity 5: General evaluation of the interview. The subjects answered a ques-



tionnaire to check if our examples address common situations observed in the industry.
Finally, we asked about the positive and negative points of our interviews.

4. Most Frequent Combinations in Complete Composites (RQ1)

This section describes the most frequent combinations in complete composite refacto-
rings, and their side effects. Table 2 presents the most frequent combinations of refac-
toring types. We found that three CGRs, namely Extract Method, Move Method and
Move Class, are commonly applied with FGRs. We also found that 132 (28%) out of
462 complete composites have at least one Extract Method combined with Change Va-
riable Type(s). These combinations of refactoring types helped to remove code smells,
such as Long Methods or Feature Envies. We observed that the Change Variable Types
and Change Parameter Types might help to simplify or remove some code statements,
decreasing lines of code and minimizing the excessive method calls to external classes.

Tabela 2. Most Frequent Combinations of Refactorings in Complete Composites

#CC with at least one Extract Method = 462
Combination #CC(%)
Change Variable Type, Extract Method 132 (28,57%)
Change Return Type, Extract Method 107 (23,16%)
Change Parameter Type, Extract Method 102 (22,08%)
Extract Variable, Extract Method 96 (20,78%)
Change Return Type, Change Variable Type, Extract Method 69 (14,93%)

#CC with at least one Move Method = 183
Change Parameter Type, Move Method 65 (35,52%)
Extract Class, Move Method 64 (34,97%)
Change Variable Type, Move Method 53 (28,96%)
Change Attribute Type, Move Method 52 (28,42%)
Change Return Type, Move Method 47 (25,68%)

#CC with at least one Move Class = 317
Change Variable Type, Move Class 91 (28,70%)
Change Attribute Type, Move Class 81 (25,55%)
Change Paramter Type, Move Class 77(24,30%)
Change Return Type, Move Class 63 (19,87%)
Change Parameter Type, Change Return Type, Move Class 42 (13,25%)

#CC with at least one Extract Method and Move Method = 62
Extract Method, Move Method 62 (100%)
Change Variable Type, Extract Method, Move Method 29 (46,77%)
Change Parameter Type, Extract Method, Move Method 24 (38,71%)
Change Return Type, Extract Method, Move Method 24 (38,71%)
Extract Variable, Rename, Extract Method, Move Method 21 (33,87%)

In summary, our results reveal that developers frequently changed the type of the
method return (23%) or parameter(s) (22%) when extracting methods. Despite type chan-
ges being simple, they can be related to more complex code changes. In other words, when
developers apply a Change Parameter Type(s) and Extract Method(s) or change the return
of a method, they need to update all methods that were calling the original methods. De-
velopers changed the parameter(s) in each call of the method and also adapted the source
code to perform the method extraction.

Finding 1: Developers tend to apply a single type of coarse-grained refactoring
(CGR) with a single type of fine-grained refactoring (FGR). The fine-grained ones
often address changing data types.
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Figura 2. Side Effect of Common Complete Composites

5. Side Effects of the Frequent combinations in Complete Composites (RQ2)
As described in the previous section, developers apply many code modifications to sup-
port a simple combination including coarse and fine-grained refactorings, generally, such
a combination is applied with non-refactoring code changes. Figure 2(b) shows inte-
resting situations in which developers applied Extract Method(s) and Change Parameter
Type(s). In that case, a high incidence of Brain Methods was introduced. This behavior
can be due to the introduction of refactoring code changes while the developer intends to
decrease the size when extracting code. On the other hand, we can see these refactorings
helped to remove mainly Long Method(s) (60%), and God Classes (58%).

Finding 2: The method extractions and changes in the type parameters helped to im-
prove the code size and coupling, regardless of the increase in the method complexity

This previous finding caught our attention because it suggests that Long Methods
might implement two or more features from external classes (due to the increase of com-
plexity method). Then, these methods can also be Feature Envies [Bibiano et al. 2019].
However, there is no empirical evidence about the frequency of methods that are Long
Methods and Feature Envy in conjunction. To investigate the frequency of methods that
have these two code smells at the same commit, we randomly selected 13 software pro-
jects, and randomly selected nearly 5,000 commits from each project. We found that 61%
of methods have Long Methods and Feature Envy in conjunction. This high frequency
indicates it is necessary to have a new code smell type to represent this recurring poor
structure (long and envious code). In that way, we defined a Long Envious Method as a
method that has excessive lines of code and implements one or more features from exter-
nal classes. This anomaly seems to occur frequently because the developers are unlikely
aware of the joint occurrence of these smells on those methods. Moreover, they might
focus on the removal of a single smell only, due to the high complexity of removing two
or more smells through the same composite.

Extract Methods and Move Methods are frequently recommended to remove Fea-
ture Envies [Sousa et al. 2020]. Figure 2(b) shows that this combination can indeed fully
remove 66% of Feature Envies. We also observed that about 26% of Feature Envies are
not affected when developers extract and move methods. In that case, the developer needs
to be alerted. Composite refactorings formed of extractions and method moves can be
related to the introduction of Long Parameter Lists (38%) and Intensive Coupling (42%).



Our results revealed that this side effect is not so frequent in the practice, but it can hap-
pen. Long Parameter Lists can be introduced because many variables are transformed in
parameters when methods are extracted. Existing recommendations do not alert develo-
pers about the introduction of Intensive Coupling. A possible cause of this side effect
is the addition of many calls of methods from other classes when the developer moves a
method, increasing the coupling of the class. This leads us to the following finding.

Along our manual validation (Section 3), we observed that Long Methods are
often removed with Duplicated Code. However, we did not collect data about duplicated
methods. In that way, to better investigate the possible relation between Long Methods and
Duplicated Methods, we used the tool CPD from the PMD Source Code Analyzer [PMD
2022]. We created Java scripts to mine duplicated methods through CPD output. Based on
the CPD rules, we considered duplicated those methods containing 30 or more duplicated
statements. We used the sample of commits that was investigated in Long Envious Method
analysis. We then analyzed the frequency of duplicated methods that are also long at
the same commit. We called these methods of Long-Signed Clone. We observed that
the methods are long and duplicated because one or more parameter cause the repetitive
and excessive lines of code. In addition, composites constituted of Extract Method and
Change Parameter Types often to fully remove Long-Signed Clones.

6. Evaluation of the Proposed Catalog (RQ3)
Based on the common combinations in complete composites found (Section 4), we cre-
ated a catalog of composite recommendations [Bibiano 2023a]. We provide four re-
commendations to remove two new smell types, Long Envious Method and Long-Signed
Clone. In that way, we created composite recommendations for the removal of these two
smells in our catalog.

To enhance our catalog, we interviewed twenty-one developers. Eleven developers
analyzed methods with Long Envious Method, and ten developers evaluated methods with
Long-signed Clone.

Code Smell Analysis: As explained in Section 3.1, the developers analyzed the
source code, without being aware of the smell types affecting the code. After the analysis,
we mentioned the code smell types. Twelve (57%) developers detected the two code smell
types, while nine (43%) developers identified only one code smell type. One developer
argued that “This method is a Feature Envy but, in my opinion, it is not long as the method
size fits to my screen”. The developer that detected the two code smell types mentioned
that it was hard knowing if the method has envy since it has five calls to external clas-
ses. The developer was not sure if five calls is an adequate threshold for Long Envious
Method. Thus, we can note thresholds to detect these new smell types may be different
from existing detection strategies because they are composed by at least two code structu-
ral problems. We then presented to developers the definition of the code smells and asked
whether they agree with that definition. All developers agreed with our definition. For
both new smells, we noted that our definition is aligned with the developers’ perceptions.

Refactoring Recommendation: All developers agreed to our refactoring recom-
mendations. For the Long-signed Clone removal, developers perceived that only extrac-
tions are not sufficient to remove this code smell, causing side effects such as the pro-
pagation of the duplicated code. Eight (80%) out of 10 developers opted for Extract



Methods and Change Parameter Types to remove Long-signed Clones. For the Long En-
vious Method, four (36%) out of 11 developers agreed to apply the first mechanics. These
developers reported that the first mechanics are more interesting for junior developers
once they probably have low familiarity with the source code and more difficulty to iden-
tify the code elements modified by composites. Other developers reported that applying
two or more code transformations at the same time is the most common for senior deve-
lopers, mainly because they have high familiarity with the source code. According to the
developers’ answers, a high familiarity with the source code increases the awareness of
the composite refactorings’ side effects. Based on that, we have our next finding.

Finding 3: Applying each refactoring by time is better for junior developers because
it facilitates the analysis of side effects.

Side Effects: Seven (33%) out of 21 developers were unaware of side effects
while proposing their solutions to remove code smells. After the proposal of their solu-
tions, surprisingly, when we mentioned the side effects, 18 (85%) out of 21 developers
reported that their own solutions could have worse side effects than our solution. From
these answers, we can observe that some developers do not have awareness about side ef-
fects while apply composite refactorings. In addition, we confirm that developers should
be guided to identify the side effects of composites once their solutions may not the best
ones to fully remove code smells.

Finding 4: Developers that are unaware of the side effects of composites tend to
perform composites inducing side effects.

7. Threats to Validity
Construct Validity: Relying purely on automated detection tools may be risky for iden-
tifying code smells and refactorings [de Mello et al. 2022]. However, performing manual
validation in large-scale samples is unfeasible. To mitigate this threat, we carefully se-
lected the tools employed: RefMiner 2.0 and Organic. Both tools are highly accurate for,
respectively, refactoring detection and code smell identification (see Section 3.1). RefMi-
ner is also beneficial because it was designed to ignore squash commits [Tsantalis et al.
2020]. One common symptom of squash commits is the large time gap between the chan-
ges performed, what is incompatible with the definition of composite refactorings. As a
result, the time interval between commits analyzed in our study is short, i.e., two weeks
on average. Some of our results may be biased due to the detection of RefMiner. For
instance, when classes are renamed, RefMiner identifies Change Parameter type for each
parameter in which its type was renamed. To mitigate this threat, we performed manual
validations to detect when the refactorings were indeed applied, independently of the pos-
sible bias of RefMiner. The heuristics followed for detecting complete composites may
bias the results. To mitigate this threat, we employed the heuristics proposed by Sousa et
al. [Sousa et al. 2020] for detecting composite refactorings, combined with the definition
of complete composites proposed in [Bibiano et al. 2020].

Internal Validity: The complete composites used in our studies were detected
by scripts written by the authors of this paper. We implemented unit tests to validate
all scripts. Besides, two authors double-checked the scripts and results of the unit tests,
mitigating the risk of validation bias. We conducted pilots involving two developers,



we then manually analyzed the data from these pilots to mitigate the threat related to
possible issues in the interviews. Besides, the authors followed standard guidelines to
manually analyze the developers’ answers. The interviews were recorded and transcribed,
which reached sufficient quality, without the need for contacting interviewees to solve
misunderstandings.

Conclusion Validity: Our definition of “completeness” for classifying composite
refactorings is based on fixed thresholds established by code smell detection tools [Oizumi
et al. 2016]. Therefore, this definition may lead to misclassification. Besides the already
reported quality of Organic, we also relied on asking developers about their agreement
with the thresholds employed for supporting the code smell detection (see Section 3). To
identify the most frequent combinations in complete composites (RQ1), we should have
in mind that some sequences of refactorings would not be performed to intentionally re-
move code smells. To mitigate this threat, specialists manually assessed which refactoring
instances actually contributed to partially or completely eliminating the code smells de-
tected. To mitigate threats addressing the automated identification of side effects (RQ2),
two authors manually analyzed the severity and intensity of samples of smells propagated
and introduced by complete composite refactorings. To evaluate the proposed catalog,
we interviewed developers from different software projects addressing different domains.
Besides, we designed the interview to evaluate the catalog from different perspectives,
including clarification, adaptability, and usability.

External Validity: Considering the nature of this study, we do not intend to claim
the generalization of our findings. However, we made efforts to employ heterogeneous
samples of projects and participants. We analyzed projects having different sizes and
addressing different domains. Besides, we found consistent results for different subsets.
The catalog was evaluated by developers playing different roles at companies in several
countries with distinct cultures.

8. Conclusion
In the context of this doctoral research, this catalog summarizes the research on composite
refactoring. This innovative catalog uses systematized concepts on the characterization
of composite refactoring and completeness proposed in [Bibiano et al. 2023]. Given the
limitations of existing recommendations for composite refactorings. We built a dataset of
42 software projects, collecting 1,397 complete composites that were the base to create
our catalog. The first results that were extracted from this dataset were published in [Bi-
biano et al. 2021]. We then extended our quantitative analysis and assessed our catalog
with 21 developers to have a practical view of our enhanced recommendations, generating
this study. Our main findings include (i) the identification of the most frequent combina-
tions in complete composites applied in the practice, and (ii) the side effects of complete
composites. In future work, we intend to extend our recommendations, explaining possi-
ble motivations in which each composite can be applied to fully solve two or more code
smells.
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Uchôa, A., Barbosa, C., Oizumi, W., Blenilio, P., Lima, R., Garcia, A., and Bezerra,
C. (2020). How does modern code review impact software design degradation? an
in-depth empirical study. In 2020 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 511–522. IEEE.


	Introduction
	Background and Problem Statement
	Composite Refactoring (or Composite)
	Completeness of Composite Refactorings
	Fine-Grained Refactorings
	Limitations of Existing Recommendations of Complete Composite Refactorings

	Study Settings
	Study Steps and Procedures

	Most Frequent Combinations in Complete Composites (RQ1)
	Side Effects of the Frequent combinations in Complete Composites (RQ2)
	Evaluation of the Proposed Catalog (RQ3)
	Threats to Validity
	Conclusion

