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Abstract. When a system evolution is not planned, developers can take 

decisions that degrade the system quality. To cope with this problem, 

refactoring can be applied to the source code aiming to increase code quality 

without modifying the software external behavior. To know when to refactor, 

the concept of bad smells can be used. Bad smells are snippets of source code 

that suggest the need of refactoring. However, bad smells does not always 

appear isolated. The aim of this study is to understand the impact of bad smell 

agglomerations on the software quality by evaluating a large dataset of open 

source systems. To achieve our goal, we plan to use data mining techniques 

complemented with correlation analysis of the dataset. 
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1. Introduction 

Software systems must evolve to cope with new requirements of the customers and 

changes in the environment where they have been deployed. This evolution increases the 

complexity of the source code, leading developers to make sub-optimal design decisions 

[van Gurp and Bosch 2002]. Design problems, such as bad use of design patterns or 

simply a long chain of method calls, can be reduced using the process of refactoring 

[Kerievsky 2005]. According to Fowler (1999), refactoring is the process of modifying 

the source code in such a way that preserves its behavior, but increases its quality. These 

modifications can involve, for example, removal of code duplication or simplifying the 

complexity of a code snippet [Kerievsky 2005].  

 However, know when to refactor is a challenging task for many developers. To 

help developers in this task, Fowler (1999) provided in their book a list of 22 bad 

smells. They are structures in the source code that needs to be refactored, indicating a 

design problem. Many authors tried to understand the impact of bad smells on the 

software quality, in terms of change proneness and fault proneness [Palomba et al. 2018] 

[Khom et al. 2012], maintenance effort [Sjøberg et al. 2012] [Yamashita 2014] and 

perception of the developers and students about the harm that the bad smells can present 

[Palomba et al. 2014] [Yamashita and Moonen 2013] [Abbes et al. 2011]. 

 However, a single snippet of code (for example a class or method) can have 

more than one bad smell, making the process of refactoring even harder. When a piece 

of code presents more than one bad smell, called bad smell agglomeration, a group of 

bad smells are said to be inter related [Oizumi et al. 2016]. If a single bad smell requires 

different refactoring operations to be removed, an agglomeration can be a much harder 

challenge, because each bad smell will have to be refactored (one at a time) using the 

operation that removes it, being necessary to check if a bad smell removal impacts 

directly on other bad smells that belong to the agglomeration.  

 The focus of this Master’s project is to give an insight on the impact of these bad 

smell agglomerations, giving initial evidences of which agglomerations needs to be 

prioritized on the refactoring process, i.e. classes that are more prone to be changed in 

future versions of the system. For this purpose, we plan to analyze bad smell 

agglomerations in a large dataset composed of open source systems of different sizes 

and domains, considering them at the level of a class.  For example, if a class C presents 

bad smells of type a, b, and c, it is an indicative of the presence of a bad smells 

agglomeration in class C. The fact that certain types of bad smells appears at different 

levels of granularity, such as method and attributes, will be considered as a mean of 

understanding if the agglomeration of bad smells impacts directly on the existence of 

bad smell at the class level.  

 As results, we expect to find the following novelties: tuples of bad smells that 

appear together in the source code, classifying them to understand the nature of the 

relationship, for example, if bad smell a makes impossible the existence of smell b in 

the same class; finally, through refactoring mining and metrics calculation, the impact 

on change-proneness, on complexity, cohesion, and coupling of such bad smells 

agglomerations will be studied. To complement the analysis of change-proneness it will 

be verified if such agglomerations were refactored or not, giving an initial idea of which 

agglomerations needs to be prioritized in the process of refactoring. 



  

2. Theoretical Background 

According to a recent systematic literature review on bad smells [Sobrinho et al. 2018], 

most studies in the white literature do not establish a relationship between bad smells. 

Another finding is that there is a focus on only five of the 22 bad smells defined by 

Fowler, indicating the need of more research to both deep and expands the current 

knowledge on bad smell agglomerations. The bad smells are: Duplicated Code, Large 

Class, Feature Envy, Long Method and Data Class. Also, the authors found that for each 

of these five bad smells, they are mostly co-studied among them, with the predominance 

of co-studies with the Large Class smell. So the focus of this project is to evaluate bad 

smells that were not studied deeply, such as Divergent Change, Speculative Generality 

and Refused Bequest, trying to identify their impact and relationship with bad smells 

that were already studied. 

 As the literature suggests, the presence of bad smell agglomerations can be 

harmful to the system quality. For instance, Palomba et al. (2018) found that the 

presence of more than one bad smell in code increases the change and fault proneness. 

Yamashita and Moonen (2013) found evidences that some (not all) agglomerations can 

difficult the maintenance process. Lozano et al. (2015) focused on raising evidences that 

the co-existence of bad smells degrade the system quality. However, most of these 

studies focus on only discovering and classifying the relationships in small dataset, 

evidencing the need of research that evaluates the impact of the agglomerations on the 

source code on a larger dataset, exploring the consequences of the refactoring process. 

 This project also relies heavily on the classification of bad smell relations 

proposed by Pietzrak and Walter (2006). We believe this classification allows a deep 

understanding of bad smell agglomerations and their impact on the software quality, 

because the classification allows identifying the type of relationship that the bad smells 

in the agglomeration have. For example, in their work, Pietzrak and Walter (2006) 

found that 90% of the Large Class analyzed presented at least one Feature Envy, 

suggesting the relationship of plain support.   

 Based on this classification, we consider the following categories of 

relationships between bad smells: Plain Support is when a bad smell a implies the 

existence of a bad smell b; Mutual Support is when both smells a and b support each 

other, implying that they originate from the same design flaw; Rejection means that the 

presence of smell a implies that smell b does not exist in the same entity; Aggregate 

Support is when the presence of a set of bad smells C, in which C = { c1, c2, …, cn} and 

ci is a smell belonging to C, C implies the existence of a smell d; Transitive Support 

means if a smell a supports smell b, and smell b supports smell c, then a supports c; 

Inclusion: smell a is a particular case of smell b. 

3. Expected Contributions 

This project aims at contributing to the software engineering community in the 

following ways: 

 Understand the relationship between bad smells that were not yet co-studied in 

the literature; 



  

 Provide evidences to confirm or deny the findings of other authors (discussed in 

the Related Work section) about the relationship between bad smells; 

 Understand the impact of bad smells agglomerations on change-proneness and if 

these agglomerations are in fact removed when the process of refactoring occurs; 

 Understand the impact of these agglomerations on cohesion, complexity, and 

coupling; 

 Provide a public dataset of bad smells agglomerations in open source systems, 

making it available in the GitHub plataform. 

4. Methodology 

This project aims at deep understanding the relationship between bad smells at the level 

of class in a large dataset. These relationships will be classified according to their type 

based on the classification presented in Section 2. This analysis aims to identify types of 

relationships and agglomerations that mostly impact on the quality of the source code. 

Figure 1 presents a process diagram with the steps planned for my master research and 

the color of the circles shows if the step was concluded or is a work in progress. 

 

Figure 1. Diagram that summarize the steps taken in this project 

 The first step (A) aims to identify the gaps in the literature, in an nonsystematic 

fashion, the bad smell agglomerations that were already studied and had its impact 

evaluated, tools that can be used to create the oracle of bad smells, and the theoretical 

background to support this project. First (a), it was searched for studies on a relevant 

database that: tries to conceptualize, or categorize bad smells; and analyzes their impact 

on the source code such as change proneness and quality. The findings in this phase 

allowed constructing a robust motivation for this project.  

 The second phase (b) was to search for studies about agglomerations, inter-smell 

relations, co-study, and co-occurrence of bad smells. This phase allowed the 

identification of: what bad smells were studied; systems that were used; methodology 

that were applied to identify such relations; and how the oracles of bad smell instances 

were created. This phase allowed the definition of which methodology to apply to this 

project and what bad smells to be evaluated.  Finally, the last phase (c) in this step (A) 

was to identify tools that detect bad smells. Previous literature reviews [Fernandes et al. 

2016] [Sobrinho et al. 2018] identify the most frequent bad smell detection tools used in 

the literature, allowing the identification what tools to be used to detect the selected bad 

smells. 



  

 With the gaps identified and all background needed, we define the problem 

scope. The first problem in the identification of agglomerations is to create a dataset that 

is large enough to present meaningful relationships (B). We are going to be using the 

systems present at Landfill (d), a Web-Based dataset of bad smells [Palomba et al. 

2015], and enriching it with the assistance of detection tools (phase f). We opt for 

Landfill because it is accepted by the community and most systems in this dataset are 

among the most used in the bad smell area [Sobrinho et al. 2018]. 

 Although Landfill has identified 243 bad smell instances, they are only in five 

types; three of them already highly studied in the literature [Walter et al. 2018] 

[Palomba et al. 2018] [Yamashita et al. 2015]. In addition, most of the studies in the 

literature focus on a small number of systems, and use only one tool to detect the bad 

smell. Hence, there is a need to create a larger dataset that contains more instances of 

different kinds of smells in systems of different domains and sizes. 

 To create this dataset, for each bad smell under study, illustrated in the second 

step (e) in Figure 1, we will run two or three tools on the dataset of systems used by the 

bad smell community. The tools to be used are the most well-known and reliable ones 

[Sobrinho et al. 2018]. Each tool will give a vote to the presence of the bad smell 

detected. If two of the tools agree that a class has a bad smell, the class and the bad 

smell detected is added to the dataset. Further, to give robustness to our dataset, for each 

bad smell under study, it will be calculated the agreements between tools on the true 

positives instances.  

 The next step is to obtain the agglomerations of bad smells that are more 

meaningful in our constructed dataset (G). For this purpose, it might apply the Item 

Dataset Mining technique (g). This technique was proposed by Agrawal et al. (1993) as 

a simple way to extract meaningful relationships from a large database through the 

identification of the antecedents and consequents. We can use this technique to identify 

pattern of items that appears together in the transactions, in our case the bad smells, 

these being represented as association rules. To support this step we will use as a 

guideline the work of Halkidi et al. (2011) that presents an overview of data mining 

techniques applied to software engineering.  

 However, not all relationships are interesting. To determine what is meaningful, 

it will be used the measurements of Support, Confidence, Correlation [Han et al. 2011], 

Lift, Leverage, Item Set-Lift and Item Set-Leverage. These measurements allow 

determining the rule’s strength. With the meaningful associations rules detected, we can 

classify them using the classification described in Section 2, providing more information 

on the types of rules that are more frequent in the source code (phase h) and identify 

which rules will have their impact analyzed.  

 Finally, in the last step (D), we can analyze the impact of these relationships on 

the quality of the source code. AlOmar et al. (2019) studied the impact on metrics of 

source code when a refactor process was done in order to improve the quality of the 

source code. They found with statistical significance metrics that have their value 

modified when the developer tries to improve the cohesion, complexity and coupling of 

the code. These metrics provide us with a quantitative visualization of factors that 

affects the quality of the source code of a system (i).  



  

 To calculate the change-proneness (j) of a class affected by bad smell 

agglomerations, we aim to rely on two versions of the same system to verify if the class 

with the agglomerations was modified. For this purpose, it will be calculated the number 

of changes that was made to the class containing the agglomeration in the two versions 

of the system, allowing to verify which types of agglomerations changes with higher 

frequency and with statistical significance. To deep the understanding of this changing, 

it will be used the RefDiff tool [Silva 2017] to mine the refactoring operations that were 

made by developers in the two versions of the systems. This allows verifying if the 

classes that have agglomerations are being totally, partially or not being refactored.  

5. Related Work 

This section aims at describing and comparing the related work used to define the scope 

of this project. Pietrzak and Walter (2005) identified and classified the agglomerations 

of bad smells through the use of data mining techniques, which was adopted by the 

authors. Later (2006), the authors extended their classification. Different from the 

authors, our focus is on the discovery of frequent tuples/classifications in a large number 

of systems; i.e., not proposing new classifications. More recently, Walter et al. (2018) 

evaluated collocated smells in the Qualita Corpus [Tempero et al. 2010]. This work is 

similar to what we plan; however, ours includes an evaluation of the impact of the found 

relationships on the quality of the source code.  

 Yamashita et al. (2015) evaluated the presence of bad smells in open source and 

industrial system. The authors discovered the existence of redundant components, in 

which a certain bad smell is dependent of the same type of bad smells. Different of this 

study, we focus on open source systems and the use of data mining techniques to 

identify and classify the found relationships. Oizumi et al. (2018) proposed and 

evaluated Organic, a tool for the identification of bad smell agglomerations. Here, we 

are trying to give evidence on which agglomerations mostly impact on quality. 
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