
Using Assurance Cases in Requirements Engineering for
Safety-Critical Systems

Camilo Camilo Almendra1

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Recife – PE – Brazil

cca3@cin.ufpe.br

Program: Pós-graduação em Ciência da Computação
Level: PhD

Adviser: Profa. Dra. Flavia Barros (fab@cin.ufpe.br)
Co-adviser: Profa. Dra. Carla Silva (ctlls@cin.ufpe.br)

Entry year in the program: 2017.1
Expected date for final presentation: 2020.2

Date of approval of the thesis: Scheduled for August 2019

Abstract. Context: Certification of safety-critical systems (SCS) demands thor-
ough documentation that demonstrates why a system shall be considered safe.
Assurance Case Development (ACD) is an approach for discussing, analyzing
and assessing the safety properties of systems. Software requirements of a SCS
are an essential information included in assurance cases, alongside system de-
sign and safety analysis information. Lack of integrated analysis of requirements
and safety concerns may lead to safety issues in the development of critical sys-
tems. One of the challenges for the agile development of SCS is to address
both Requirements Engineering (RE) and ACD in an integrated way through-
out the development life cycle. Objective: This research proposes a framework
to integrate the Assurance Case Development and Agile RE in the development
of SCS. Method: This research is organized in three main phases. First, a
systematic mapping study is performed to understand how incremental ACD is
addressed by current approaches, and a survey with experts is carried out to
understand the development of ACs during Agile RE activities in practice. Sec-
ond, the framework and its supporting tools and documentation will be designed
and developed. Finally, a series of empirical studies will evaluate aspects of the
framework in a multi-perspective manner and as long as it is developed. Con-
clusions: We expect that this approach contributes to leverage the development
of ACs earlier and integrated with RE activities in agile development of SCS.
Keywords: Safety-Critical System. Assurance Case. Agile Requirements Engi-
neering.
CBSoft related events: SBES, SBCARS.



1. Problem Characterization

Software is an essential part of modern embedded, electrical/electronic and control sys-
tems [Hatcliff et al. 2014]. Software-intensive systems permeate several domains, such as
automotive, robotic and medical devices. Safety-critical systems (SCS) are those whose
operation brings concerns regarding harms or damages they can cause to people, orga-
nizations or environment in case of failure [Hatcliff et al. 2014]. Many standards ac-
knowledge software components as essential parts of modern safety-critical systems and
demand the fulfillment of a series of high-level safety requirements and process com-
pliance obligations [Ebert 2015]. In the context of Agile Software Development (ASD)
approaches, it is paramount that the production of certification documentation follows the
system development [Heeager and Nielsen 2018].

Nowadays, some standards mandate or recommend the use of assurance cases
(AC) as part of the certification documentation, such as the standards ISO 26262 (for
road vehicles1) and Def Stan 00-56 (from UK Minister of Defence and applicable for
all defence systems2). The purpose of an AC is to present “a clear, comprehensive
and defensible argument that a system is acceptably safe to operate in a particular
context” [Kelly 1999]. ACs are an amalgamation of information that comes from stan-
dard requirements, product requirements, risk and hazard analysis results, design deci-
sions and rationale, validation and verification results, and process management records
[Bloomfield and Bishop 2010].

Traditional approaches for AC development (ACD) elaborate the ACs after com-
pleting construction and verification of a system [Bloomfield and Bishop 2010]. Al-
though ACs require information that will only be completely available at the end of the
lifecycle, it is not recommended to start the elaboration of them in the late phases of de-
velopment [Kelly 1999, Hatcliff et al. 2014, Doss and Kelly 2016]. In fact, according to
[Hatcliff et al. 2014], it may raise safety and project management risks, which may lead
to increased rework caused by late-discovered safety issues, since a hazard may not be
adequately eliminated or mitigated by design. In addition, developers may not have accu-
rately recorded many decisions and safety evidence, maybe because of process deviation
or lack of safety planning. Even so, late development of ACs is still a current practice
[Myklebust et al. 2017].

Loss of requirements and design rationale affect the quality and completeness of
documentation sent to certification authorities [Hatcliff et al. 2014]. Good RE is key to
the production of quality systems, even more in the context of software-intensive critical
systems [Vilela et al. 2017]. There is extensive research on specification and analysis of
requirements for safety-critical systems, but there still are gaps when tracing requirements
to safety analysis information [Lutz 2000]. As modern development processes rely more
and more on exploratory or iterative-incremental approaches – such as ASD, there is a
lack of mechanisms to disseminate knowledge about new or derived safety requirements
throughout the software development life cycle (SDLC) [Lutz 2000].

This research explores the development of ACs integrated with Agile RE activi-
ties. The objective of this thesis is to propose a framework to support the integrated devel-

1https://www.iso.org/standard/43464.html
2https://www.skybrary.aero/bookshelf/books/344.pdf



opment of ACs in the context of Agile RE activities. The rest of this paper is structured
as follows. Section 2 describes the background concepts of the study. Section 3 presents
the expected contributions. Section 4 describes the current status of this research. Sec-
tion 5 describes preliminary results and ongoing work. Section 6 presents a comparison
between our proposal and related works. Finally, we present our conclusions.

2. Background

2.1. Assurance Case

Initially, AC artifacts consisted of unstructured text comprising hundreds of pages
[Bloomfield and Bishop 2010]. The need for a more formal structure has led to the de-
velopment of structured argument notations to specify assurance cases. The structure
of safety arguments comprises three main elements: Claims, Arguments and Evidence
[Kelly 1999]. Claims are high-level goals or constraints addressed during system devel-
opment, and the Arguments are elaborated to demonstrate that the claims were satisfied.
Evidence is any piece of information generated during design, implementation and veri-
fication activities that substantiates some Claim or Argument. Arguments are reasoning
steps used to show how pieces of evidence support the claims. Often, a top claim needs
to be decomposed into sub-claims, thus creating a hierarchy of claims (see Figure 1).

Figure 1. Safety argument structure (adapted from [Kelly 1999]).

The provision of evidence to back up claims is the fundamental objective of safety
argument development. It requires an explanation, a rationale to explain why the pieces
of evidence together confirm a claim. Much of the information needed to develop ACs is
stored in project management tools (PMT3), specially the tools storing requirements and
design decisions.

2.2. Requirements Engineering in Safety-Critical Development

As a knowledge-intensive work, requirements elicitation and analysis goes from scattered
data in multiple sources (human or not) to structured information and identified decisions,
understood and negotiated among stakeholders [Kotonya and Sommerville 1998]. Often
we need to take the opposite course, going from decisions and specifications back to their
source to confirm understanding. Such explanation interrelating high-level requirements
and low-level artifacts is known as the rationale [Burge et al. 2008]. In the context of
ACD, rationale are the essence of arguments. It provides the confidence to assure that
requirements decomposition and design decisions reasonably address all identified risks
and hazards.

3We refer to project management tools as any information system, tool, model, document or spread-
sheet that holds project information regarding requirements, design, safety information, tests, code and
traceability.



Table 1. Expected benefits of ACD in RE-related activities
RE-related activity Purposes for RE Benefits of ACD
Release Planning Decomposition of features into requirements

and identification of hazards and high level
safety requirements

Preliminary AC reviewing provides a way to early assess-
ment of requirements decomposition

Backlog Grooming Revising of whole product planning and re-
finement of backlog items for forthcoming it-
erations

Updated AC generated from PMTs provides a snapshot
view of the safety assurance strategy, highlighting points
that need further discussion

Change Manage-
ment

Analyze the impact of a change request This activity requires support to ”what-if” analysis, and the
AC provide a way to analyze the impact of changes in the
safety assurance

Iteration Planning Last discussion towards the scope and accep-
tance criteria of requirements, and decompo-
sition of backlog items (e.g. stories) into tasks

Updated AC can be used to recall the safety evidence needs

Iteration Review Validation of requirements implementation
and quality of deliverables

AC generated at end of iteration will provided stakeholders
with an updated status of safety assurance of the system

Agile RE involves many roles, practices and artifacts [Leffingwell 2010]. We
identified five agile development activities that are related to RE and could benefit from
ACD. During these activities, the main Agile RE artifacts (e.g. user story and prototypes)
are created, updated and discussed [Schön et al. 2017]. The Table 1 presents the purpose
of each activity (with respect to RE) and the expected benefits of integrating ACD into
it. In a general manner, the process of construction and reviewing of assurance cases
provide stakeholders and teams with updated status of the safety assurance. Gaps, incon-
sistencies and enhancements found in the assurance argumentation trigger improvements
to development plans.

3. Contributions
The scope of this research refers to the integration of ACD into Agile RE activities, in the
context of agile development. We argue that the incorporation of assurance development
as single practices alongside the RE activities improve the quality of safety requirements
and safety evidence management in SCS development. The objective of this work is to
propose a framework that encompasses a model for assurance rationale management and
a mechanism for generation of AC from PMTs. The novelty of our approach is to man-
age assurance rationale directly into PMTs. These tools commonly store requirements,
architecture design, tests, code and tracing information. Using the tools enriched with
assurance rationale, we will provide a mechanism for AC generation. These cases would
be readily available anytime and be used as up-to-date models to support requirements
activities. Also, they serve as base to prepare final AC for certification procedures.

The main research questions that guide our work are: (RQ1) How can assurance
information be integrated into agile project management tools?, and (RQ2) How to incor-
porate incremental assurance case development practices into Agile RE processes?. We
seek to answer those research questions by achieving the following specific objectives:

O1 State of the art on incremental ACD: We aim to identify and analyze existing
approaches for integrating ACD as part of the SDLC in an incremental manner.
We aim to characterize the approaches by expected benefits, points of integration
with existing processes, roles, activities, and artifacts involved.

O2 State of the practice on integration between ACD and RE: We aim to gather
practitioners practices and perspectives regarding the development of AC during
RE activities.



O3 Framework design: A framework will be designed and implemented to provide:
i) a model to manage assurance rationale integrated with PMTs; ii) an ontology to
guide the assurance rationale information management; iii) a mechanism to gen-
erate assurance case from PMTs enriched by assurance rationale information; and
iv) a set of guidelines to support the integrated development of AC in the context
of RE activities. The initial design of this framework is presented in Section 4.

O4 Framework evaluation: We aim to evaluate the overall proposal by a combi-
nation of multiple empirical studies. The evaluation plan is discussed in Section
5.

3.1. Framework proposal
This work proposes a framework to support the integrated development of ACs in the
context of Agile RE activities. There are four main parts that compose the framework,
depicted in Figure 2 and discussed as follows.

Figure 2. Overview of thesis proposal.

• Assurance rationale information model (ARIM) (Figure 2-A): We aim to design a
model to manage assurance rationale inside PMTs. The ARIM guides the inclu-
sion of safety assurance rationale directly associated with the information items
that already exist in the tools and artifacts. The model serves as a schema for im-
plementation of a Project Information Retriever (PIR), that generates input to feed
the ontology.

• Assurance rationale ontology (ARO) (Figure 2-B): We aim to design an ontology
to classify the information retrieved from PMTs. Our ontology will be designed
to classify project information regarding requirements, design, tests, code, safety
analysis, tracing information, and their relationships. Also, the ontology will clas-
sify additional assurance rationale information stored after the adaptation of PMT
to incorporate the ARIM concepts. The ARO will be implemented using OWL-
DL 4 and Protégé tool 5.

4https://www.w3.org/TR/owl-guide/
5https://protege.stanford.edu/



• AC Generator (Figure 2-C): We aim to implement a mechanism to generate ACs
from PMTs enriched by assurance rationale information. We aim to generate ACs
in multiple perspectives based on different argumentation patterns.

• Process guidance to integrated development (Figure 2-D): We aim to prepare
guidelines to support the reviewing of the AC in the context of Agile RE activ-
ities, and to support the systematic update of assurance rationale information into
PMTs.

4. Current Status
The methodology to develop this thesis is described in Figure 3.

Figure 3. Thesis methodology steps.

Literature review and Mapping study. We performed literature review on RE
and ACD, that leads to the formulation of the research questions and planning of the
systematic mapping study. We then conducted a systematic mapping study (SMS) on
incremental ACD. Our aim was to identify and analyse existing approaches for integrating
ACD as part of the SDLC in an incremental manner and an analysis of them in terms of
expected benefits, points of integration with SDLC, roles, activities, and artifacts involved
[Almendra et al. 2019]. The main findings of the SMS are: i) an overview of the existing
approaches to integrate ACD; ii) ACD is performed in various phases of SDLC; iii) most
of the SDLC models identified were agile or incremental-based; iv) 60% of studies put
developers in active role of building and/or reviewing AC; v) all studies adopted manual
construction of AC and only 20% of the studies used quantitative metrics for assessment.
We further discuss these findings in Section 6. From these results, we identify a gap in
supporting teams in the incremental development of assurance case within the context of
an agile, scope-driven development. This context largely differs from the model-driven
approach for which there are solutions for model-based management of assurance cases
[de la Vara et al. 2018].

Survey. We are planning a survey with assurance case researchers and practition-
ers. The main questions that we want to gain insights are: “What are the benefits and
pitfalls of incremental ACD in the context of RE activities?”, “How the tracing informa-
tion between requirements and safety evidence is created and managed?”, and “Which
kind of assurance information is difficult to recall in later stages of development?”. It
is a cross-sectional survey administered through a web-based questionnaire. The popu-
lation is professionals involved in the development of critical systems and that have any
experience with ACD. The sample will be constituted by convenience from participants
invited, selected from database of previous surveys applied by research partners, authors
of studies selected in previous literature reviews, and practitioners found in professional
social networks (e.g. LinkedIn).



5. Next steps
Framework development. We have drafted the framework (see Section 3.1). We are
currently developing the ARIM.

Evaluation of ARIM. One real-world PMT will be adapted to incorporate the
ARIM (Figure 2-A). The PIR will be customized to extract information from the adapted
PMT. This adaptation serves as an initial illustrative evaluation of the ARIM and PIR.
Furthermore, we aim to empirically evaluate the adequacy of ARIM to extend PMTs with
assurance rationale information. Thus, we will conduct a case study that focus on the
observation of developers adapting the ARIM and the PIR to other real-world PMTs. We
expected both ARIM, PIR and their companion documentation are sufficient for guiding
developers into customizing PMTs for assurance case rational recording.

Evaluation of ARO. An ontology is a knowledge-based system, and shall be
evaluated by the information it helps to leverage. The evaluation criteria for an ontol-
ogy content are consistency, completeness, conciseness, expandability and sensitiveness.
The experts will be presented to ARO implementation and a running illustrative scenario.
Their feedback will be gathered by asking open-ended questions. The objective of this
evaluation is to identify gaps or errors in the ontology design for further refinement.

Evaluation of ACG. We will investigate how the ACG could improve the con-
struction of ACs in the context of requirements engineering activities. We compare the
ACG with a traditional manual construction of ACs by means of a controlled experi-
ment. The manual construction is often used for the incremental development of ACs
[Almendra et al. 2019]. We plan to compare these two approaches (factors of the ex-
periment design) about their effectiveness for supporting the construction of assurance
cases and its arguments based on project management information, safety information
and assurance rationale. We plan to measure the effectiveness by means of how much it
influences in subject’s ability to associate correct information to ACs. The use of ACG is
expected to increase the numbers of correctly stated elements, and to decrease the number
of incorrectly stated and missing elements.

Evaluation of the framework. The overall solution proposed by the framework
will be evaluated by experts (researchers and practitioners). The framework will be pre-
sented by means of a working instance (demo) of the tools, illustrative scenarios and in-
structional material. The idea is to evaluate the perception of experts about the usability of
the framework. We understand that a real case study would provide rich and insightful in-
formation for the evaluating this framework. In case of finding a suitable team/company
to conduct such case studies, out methodology will be updated. Notwithstanding, the
methodology planned so far seeks to evaluate the framework from different perspectives.

6. Comparison with Related Work
A comparison with related work is presented in Table 2. We selected five aspects for com-
parison, these aspects are those that we will propose contributions. The first two aspects
are AC Planning and AC Construction, these aspects refer to if and how occurs ACD
during planning or development phases of software life cycle. In case of agile meth-
ods, planning refers to any activities performed before the iterations, and construction
refers to activities performed during or in the end of iterations. Traceability Manage-
ment refers to how the links between hazards, safety requirements and design decisions



are organized in PMTs. Rationale Management refers to how arguments, justifications,
assumptions and any other rationale information is maintained. The last aspect is Ar-
gumentation Perspective, which refers to how the assurance argumentation is organized
from top claims down to evidences. We identified that most works suggests that an ini-
tial assurance argumentation is produced before the beginning of development iterations.
In the subsequent iterations, these preliminary cases are refined and extended to address
the assurance arguments related to the scope selected for implementation. In all works,
there is no semi or full automation for assurance case generation. The lack of expertise
and guidance in the construction of the arguments is regarded as a recurring problem
[Cheng et al. 2018, Doss and Kelly 2016].

Table 2. Comparison of related works.
Work AC planning AC construction Traceability man-

agement
Assurance
rationale
management

Argumentation
presentation

Hall & Rapan-
otti (2008)

Safety requirements
and hazards stated as
initial problems

Unified process trans-
forms problems into
design decisions and
assurance arguments

Requirements and
design decisions
stated directly
in the problem
transformations

Recorded in a
set of problem
transforma-
tions

Problem-
oriented

Ge et al. (2010) Initial AC produced
based on module in-
ternal architecture

Manual construc-
tion/update during
iterations

Not discussed Recorded in
the assurance
case

Software
module-
oriented

Stålhane &
Myklebust
(2016)

Initial AC produced
based on hazard iden-
tification

Manual construc-
tion/update during
iterations

Directly in the as-
surance case

Recorded in
the assurance
case

Hazard-
oriented

Cleland-Huang
& Vierhauser
(2018)

Not discussed Manual construc-
tion/update after
iterations

Embedded in
PMTs

Recorded in
the assurance
case

Requirements-
oriented

We found three different approaches for traceability management, in the works
that discussed this aspect. The problem-oriented approach [Hall and Rapanotti 2008]
combines much information in the problem transformations, although requirements
and architecture information probably have external supporting documents. In
[Stålhane and Myklebust 2016], it is proposed that the assurance case needs to refer to
relevant documents such as code, test results, review results and solution evidences. A
different approach is proposed by [Cleland-Huang and Vierhauser 2018], trace links be-
tween hazard, safety requirements and design decisions are managed inside PMTs. This
tracing information is then used to support the construction of the arguments, together
with the assurance rationale.

We found that all approaches manage the assurance rationale inside the assurance
case arguments. In fact, this is what assurance case notation language and problem trans-
formations are designed for. In all approaches, AC are external artifacts that have to be
maintained alongside the development. A consequence is that assurance case structure
tend to follow a specific perspective, and to view the same information organized in an-
other perspective, it requires the construction of a new case.

7. Conclusions
We presented a proposal for a framework to support the development of assurance cases
in the context of Agile RE activities. Our proposal contributes to the state of the art in
three aspects. First, we propose to enhance project management tools with assurance ra-
tionale information, that would be managed iteratively and incrementally alongside the



development. Second, we propose a mechanism to generate AC from information stored
in project management tools. It will use information commonly recorded in project repos-
itories and the assurance rationale management model we will propose. Finally, we will
support the generation of assurance arguments in multiple perspectives, thus reducing the
effort to analyze the assurance rationale and project information in different ways.

Acknowledgements
The author thanks CNPq for funding the execution of this work.

References
Almendra, C., Vilela, J., , and Silva, C. (2019). A systematic mapping study on incremental development

of safety cases. Yet to be published.
Bloomfield, R. and Bishop, P. (2010). Safety and assurance cases: Past, present and possible future – an

adelard perspective. In Dale, C. and Anderson, T., editors, Making Systems Safer. Springer.
Burge, J. E., Carroll, J. M., McCall, R., and Mistrik, I. (2008). Rationale and Requirements Engineering,

pages 139–153. Springer Berlin Heidelberg, Berlin, Heidelberg.
Cheng, J., Metoyer, R., Cleland-huang, J., Dame, N., and Dame, N. (2018). How Do Practitioners Per-

ceive Assurance Cases in Safety-Critical Software Systems ? In Proceedings of the 11th International
Workshop on Cooperative and Human Aspects of Software Engineering, pages 5–8. ACM.

Cleland-Huang, J. and Vierhauser, M. (2018). Discovering , Analyzing , and Managing Safety Stories in
Agile Projects. IEEE 26th International Requirements Engineering Conference.

de la Vara, J. L., Ruiz, A., and Espinoza, H. (2018). Recent Advances towards the Industrial Application of
Model-Driven Engineering for Assurance of Safety-Critical Systems. In 6th International Conference
on Model-Driven Engineering and Software Development., pages 632–641.

Doss, O. and Kelly, T. P. (2016). Challenges and opportunities in agile development in safety critical
systems: A survey. SIGSOFT Softw. Eng. Notes, 41(2):30–31.

Ebert, C. (2015). Implementing functional safety. IEEE Software, 32(5):84–89.
Ge, X., Paige, R. F., and McDermid, J. A. (2010). An Iterative Approach for Development of Safety-Critical

Software and Safety Arguments. In Agile Conference, pages 35–43.
Hall, J. G. and Rapanotti, L. (2008). Assurance-Driven Design. In 2008 The Third International Conference

on Software Engineering Advances, pages 379–388.
Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., and Jones, P. (2014). Certifiably safe software-dependent

systems: Challenges and directions. In Proceedings of the on Future of Software Engineering, FOSE
2014, pages 182–200, New York, NY, USA. ACM.

Heeager, L. T. and Nielsen, P. A. (2018). A conceptual model of agile software development in a safety-
critical context: A systematic literature review. Information and Software Technology, 103(July):22–39.

Kelly, T. P. (1999). Arguing safety: a systematic approach to managing safety cases. PhD thesis, University
of York.

Kotonya, G. and Sommerville, I. (1998). Requirements Engineering: Processes and Techniques. Wiley
Publishing, 1st edition.

Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams, programs, and
the enterprise. Addison-Wesley Professional.

Lutz, R. R. (2000). Software engineering for safety: a roadmap. In Proceedings of the Conference on The
Future of Software Engineering, pages 213–226. ACM.

Myklebust, T., Hanssen, G. K., and Lyngby, N. (2017). A survey of the software and safety case develop-
ment practice in the railway signalling sector. In European Safety and Reliability Conference (ESREL).

Schön, E.-M., Thomaschewski, J., and Escalona, M. J. (2017). Agile requirements engineering: A system-
atic literature review. Computer Standards & Interfaces, 49:79–91.

Stålhane, T. and Myklebust, T. (2016). The agile safety case. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Vilela, J., Castro, J., Martins, L. E. G., and Gorschek, T. (2017). Integration between requirements engi-
neering and safety analysis: A systematic literature review. Journal of Systems and Software, 125:68 –
92.


