A Literature Study to Characterize Continuous Experimentation in Software Engineering

Vladimir M. Erthal¹, Bruno P. de Souza¹, Paulo Sérgio M. dos Santos², Guilherme H. Travassos¹

¹PESC/COPPE – Federal University of Rio de Janeiro (UFRJ)
 Rio de Janeiro – RJ – Brazil

²Department of Applied Informatics – Federal University of the State of Rio de Janeiro
 Rio de Janeiro – RJ – Brazil

¹{vladimirerthal, bpsouza, ght}@cos.ufrj.br, ²pasemes@uniriotec.br

Abstract. Continuous Experimentation (CE) has become increasingly popular across industry and academic communities. Given its rapid evolution in software engineering (SE), the lack of a common understanding of CE can jeopardize new implementations and justify research efforts. Therefore, this literature study characterizes CE in SE based on its definitions, processes, and strategies for experimentation available in the technical literature. Seventy-six sources of information provided many different definitions, processes, and experimental procedures used to describe CE in SE. Despite the increasing use of CE in SE, it is impossible to observe a common terminology yet to support its characterization and use.

1. Introduction

Continuous Experimentation (CE) has emerged as a new development practice for software systems. It aims to support software systems engineering through a systematic definition of hypotheses, continuous delivery to the end-users, and monitoring metrics to assess the acceptance or rejection of hypotheses based on evidence of actual use [Fagerholm et al. 2017]. It arose from the context of agile practices with a strong basis on the Lean Startup methodology of “build-measure-learn” [Fagerholm et al. 2014].

CE plays a fundamental role in supporting collaboration between the customer and the development team to discover new software requirements [Olsson and Bosch 2013a]. Also, using controlled experiments, CE guides software development organizations to evaluate and prioritize their development efforts, such as implementing a specific requirement/feature based on users’ data [Olsson and Bosch 2014] and discovering the real needs of the users to create value and innovation in the product. It has been widely implemented by several big companies, mainly in web and mobile software systems. Large organizations such as Facebook, Google, Microsoft, LinkedIn, and Netflix have reported their experience using CE to evolve their software products [Auer et al. 2021].

Beyond CE, different expressions have been proposed to refer to this practice in the technical literature, such as Data-Driven Development (DDD) [Bosch and Olsson 2017], Innovation Experiment System (IES) [Bosch 2012], Online Controlled Experiments (OCE) [Kohavi et al. 2013], among others. As a result, the studies report
countless processes and strategies from the vast array of expressions [Auer et al., 2021]. Therefore, it is not easy to observe a common understanding regarding continuous experimentation in software development. Moreover, these multiple understandings and perspectives make it difficult to synthesize the papers' contributions. Sometimes, it uses different expressions of the same concept or other words for different concepts. The lack of a common terminology motivated us to understand better and consolidate CE's definitions, processes, and experiment strategies. We believe it can contribute to the technical discussion regarding CE in software engineering (SE) by providing a common knowledge base. Therefore, we performed a literature study to identify and characterize its different definitions, processes, and experimental strategies to support the initial discussions towards organizing a common terminology of continuous experimentation in software engineering.

Besides this introduction, this paper offers the following parts. Section 2 describes the related work used as a seed for this investigation. Next, section 3 introduces the literature study protocol. Section 4 reports the main findings regarding CE's definitions, strategies, and processes. Next, section 5 discusses such findings and presents the implications of CE in SE. Section 6 shows the threats to validity. Finally, section 7 concludes by suggesting some future actions.

2. Related Works
Continuous experimentation has been an object of secondary studies since 2018, as it can be observed in six secondary studies dedicated to this topic. First, Auer and Felderer (2018) published an extensive systematic mapping of 82 primary studies. They addressed questions such as the amount of research activity, the intensity of collaboration between industry and academia, the kind of contributions provided, the most frequently investigated research topics, and the terms used for CE. In the same year, Ros and Runeson (2018) also published a mapping study with 62 primary sources regarding questions focused on the main topics researched within CE, the kind of organizations that use CE, and the characteristics of the experiments that have been used with CE. Also, in 2018, Mattos, Bosch, and Olsson (2018) published a literature review on 42 papers, but in this case, with a focus on CE adoption by embedded systems.

In 2020, Auer, Lee, and Felderer (2020) performed a secondary study with 14 papers focused on experiment characteristics. They proposed a taxonomy for creating experiments used in CE, seeking characteristics, guidelines, checklists, and review processes. Giaimo, Andrade, and Berger (2020) published a literature review with eight papers focused on applying CE in cyber-physical systems in the same year. Finally, in 2021, Auer, Ros, Kaltenbrunner, Runeson, and Felderer (2021) published a systematic literature review on 128 papers addressing three questions: the core constituents of a CE framework, the experiment strategies (that they call technical solutions) applied within CE and its challenges and benefits.

These secondary studies [Auer and Felderer 2018] [Ros and Runeson, 18] [Olsson, 18] [Auer et al., 20] [Giaimo et al., 20] [Auer et al., 21] define CE in different ways. It evidences the lack of a common definition of CE. These studies use CE as a general term, encompassing different perspectives, such as Data-Driven Development, Online Controlled Experiments, and Innovation Experiment Systems. As far as we could experience on our software projects, even though these different terms can share
common practices, they do not represent the same concept. Therefore, they can blur the perspectives of practitioners and researchers when selecting CE practices that best apply to their specific software system projects.

3. Literature Study

3.1. Planning

Previous secondary studies (see Section 2) investigated CE, although with different goals from our study. They identified many primary sources of information. Therefore, we understood that a search strategy based on database searches was unnecessary. Thus, we first executed an ad-hoc search, including the secondary studies, to create the seed to perform our literature study using the Snowballing technique. Further, for the remaining phases of the review, we followed the practices of literature studies in software engineering as suggested in [Kuhmann et al. 2017] for replicability and auditing of the results. It includes defining appropriate research questions, a search string, inclusion and exclusion criteria, data collection, dataset cleaning, and study selection.

Following the GQM (Goal/Question/Metric) paradigm [Basili et al. 1994], this study aims to analyze Continuous Experimentation practice with the purpose of characterizing its definitions, common expressions, processes, models, and experiment strategies from the point of view of SE researchers in the context of the SE technical literature provided by the Scopus database and snowballing. The Research Questions (RQs) detail the main aspects of the investigation [Table 1].

The term "models" is any graphical representation of any part of the experimentation approach, such as processes, frameworks, lifecycles, and architectures. This definition was used to compare the papers' organizational practices suggested or reported. Similarly, "experiment strategies" refer to obtaining and analyzing the user data needed to conduct the experiments in a CE process.

The initial ad-hoc search was performed using the Scopus database, a stable and large coverage search engine, basing the search on widespread expressions and limiting the search period for the last six years (2015 to 2021). The inclusion and exclusion criteria allowed us to get acquainted with the literature and create the seed for snowballing. Table 1 shows all these features. The snowballing technique searches for a research theme related to the initial articles by looking at those referenced by the initial set (backward) and those referred to (forward) [Wohlin 2014]. The same inclusion and exclusion criteria supported the decision on the suitability of the sources of information.

<table>
<thead>
<tr>
<th>Research Questions</th>
<th>Search String</th>
<th>Inclusion Criteria</th>
</tr>
</thead>
</table>
| RQ1: Which are the expressions and definitions associated with the CE concept? | ("continuous experimentation" OR "continuous software experimentation" OR "experiment systems" OR "data-driven development" OR "A/B tests" OR "A/B testing" OR "online controlled experiments" OR "online controlled experimentation" OR "innovation experiment system" OR "Experiment-driven software development") | 11. The paper must be in the context of CE and Software Engineering.
12. The paper must report a primary or a secondary study.
13. The paper must provide data to answer at least one of the research questions.
14. The paper must be written in the English language. |
3.2. Execution

The search has been performed with Scopus by March 13th, 2021. It resulted in 1125 suggestions of articles, from which we selected 33 papers [S1][S2][S5][S14][S16][S17] [S18] [S20] [S22] [S25] [S26] [S28] [S29] [S31] [S42][S43][S46][S48][S49][S50][S51] [S53][S57][S59][S61][S64][S68][S69][S70][S72][S76] because they provide models or experiment strategies of CE and deal with other contexts beyond the web context.

The papers were selected according to the defined inclusion and exclusion criteria. Then, two researchers analyzed the collection of selected sources to respond to each research question. The level of agreement was high among researchers, and the differences were resolved by analyzing the papers together. One last researcher reviewed the selection process—the snowballing identified 43 additional primary sources from 2007 until 2021. The final set of papers contains 76 selected papers. We consider this final set of articles relevant because of the different search strategies and objectives of our study and the appearance of [S6][S13][S15][S18][S24][S25][S28][S31][S42][S45][S46][S47][S48] [S49] [S50] [S51][S52][S53][S54][S55][S57][S58][S59][S65][S66] [S68] [S70] [S76], which are not present in the dataset of the last and large systematic literature review [Auer et al., 21].

4. Results

4.1. Continuous Experimentation Expressions and Definitions (RQ1)

In the selected papers, we identified 21 different expressions to describe the practice of applying experiments to guide a software system development process. Despite some similarities observed in their definition, some of these expressions have different definitions in various papers. Therefore, to facilitate the analysis, we decided to group the less cited expressions under the most cited ones. To do that, we first identified five terms that have citations in ten or more papers: Continuous Experimentation (30), Online Controlled Experiment (16), Data-Driven Development (12), Innovation Experiment System (10), and A/B Tests (10). However, analyzing the "Online Controlled Experiment" definitions, we realized that most of these matched this expression with A/B Tests. So, we decided to group the expression "A/B Tests" under "Online Controlled Experiment," reducing the categorization to four groups. The other terms were organized into these groups first by the similarity of their definitions in the papers: "Systematic Experimentation" and "Controlled Continuous Experimentation" into "Continuous Experimentation"; "Experiment-Driven Software Development," "Customer-Driven Development," and "Experiment-Driven Approach" into "Data-Driven Development"; and "Continuous Innovation," and "Innovation Process" into "Innovation Experiment System." Then, the remaining expressions were analyzed in its papers, and we identified that all of them were matched to A/B Tests. So, we organized
them into "Online Controlled Experiment." All the researchers agreed with this categorization. Table 2 shows all the found expressions and their categorization. In this table, the 'Qty' column indicates the hits of each term in the papers. All the cited expressions were counted when a paper had citations to more than one expression. Still, only one hit was calculated for each term in each paper.

Table 2. Used expressions to describe the practice of applying experiments to guide the development process of a software system.

<table>
<thead>
<tr>
<th>Group expression</th>
<th>Expressions</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Experimenation</td>
<td>Continuous Experimentation [S1][S2][S3][S13][S19][S20][S22][S24][S25][S26][S27][S28][S29][S34][S35][S40][S44][S45][S46][S52][S53][S62][S63][S64][S65][S68][S70][S73][S75][S76]</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Systematic Experimentation [S40]</td>
<td>1</td>
</tr>
<tr>
<td>Controlled Continuous Experimentation</td>
<td>Online Controlled Experimentation [S10][S11][S13][S15][S16][S17][S18][S31][S33][S37][S38][S39][S42][S43][S55][S59]</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>A/B Tests [S10][S21][S30][S36][S37][S39][S43][S59][S72]</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Experimentation [S9][S15][S23][S32][S49][S50][S51][S74]</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Controlled Experiments [S30][S36][S72]</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Live Experimentation [S21][S67]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Control/Treatment [S36]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Parallel Flights [S36]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Randomized Experiments [S36]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Split Tests [S36]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Test-and-learn [S55]</td>
<td>1</td>
</tr>
<tr>
<td>Data-Driven Development</td>
<td>Data-Driven Development [S5][S6][S14][S41][S43][S52][S55][S56][S58][S59][S61][S71]</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Experiment-Driver Software Development [S43][S48][S53][S76]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Customer-Driven Development [S57]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Experiment-Driver Approach [S41]</td>
<td>1</td>
</tr>
<tr>
<td>Innovation Experiment System</td>
<td>Innovation Experiment System [S4][S6][S12][S34][S44][S55][S60][S62][S66][S7]</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Continuous Innovation [S22][S34][S60][S66]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Innovation Process [S8]</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2. Continuous Experimentation Processes (RQ2)

Twenty-four models are proposed in the analyzed papers to guide the CE development process, implant CE into an organization, or deal with specific CE aspects [Table 3]. We classified them into six dimensions. First, development processes establish ordered activities to develop a software system guided by experimentation. Second, maturity processes propose a path to transition a traditional development process into an experimentation-driven one. Third, architecture models illustrate the software experiment structures. Fourth, logical flows show an experiment's paths. Finally, lifecycle and management help structure these specific parts of the experiment.

Each model was analyzed in its activities and purposes by two researchers. As a result, we classified eleven items as development processes, six as maturity processes, three as architecture models, two as logical flows, one as lifecycle, and one as management.
Table 3. CE models proposed in the technical literature.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Model Name</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Processes</td>
<td>Facebook's deployment pipeline [S21]</td>
<td>Development and deployment with canary release</td>
</tr>
<tr>
<td></td>
<td>Hypotheses Engineering [S48]</td>
<td>Creating and managing hypothesis</td>
</tr>
<tr>
<td></td>
<td>Explanatory CTP model for customer touchpoints and feedback data collection [S66]</td>
<td>Model focused on the interactions with customers</td>
</tr>
<tr>
<td></td>
<td>HYPEX model [S56]</td>
<td>Shows how to close the "open-loop problem" between requirements and user data</td>
</tr>
<tr>
<td></td>
<td>Unnamed model [S4] [S12]</td>
<td>CE model for embedded systems</td>
</tr>
<tr>
<td></td>
<td>The HURRIER Process [S46]</td>
<td>CE model for business-to-business (B2B) systems</td>
</tr>
<tr>
<td></td>
<td>The Qualitative/quantitative Customer-driven Development (QCD) model [S57] [S58]</td>
<td>Focused on customer feedback techniques to generate hypotheses</td>
</tr>
<tr>
<td></td>
<td>Bing's experimentation process [S35]</td>
<td>Focused on validating data to iterate, ship, or abandon the hypothesis</td>
</tr>
<tr>
<td></td>
<td>Experimentation Process Framework [S43]</td>
<td>Detailed CE model with activities, artifacts, inputs/outputs, and stored data</td>
</tr>
<tr>
<td></td>
<td>Fagerholm et al. process [S19]</td>
<td>Based on the Lean Startup methodology, lists activities and roles</td>
</tr>
<tr>
<td></td>
<td>RIGHT process model for Continuous Experimentation [S20]</td>
<td>Based on the Lean Startup methodology, lists activities and roles (update of [S19])</td>
</tr>
<tr>
<td>Maturity Processes</td>
<td>Transitioning towards experiment-driven development [S41]</td>
<td>Areas that the company needs to evolve up to CE</td>
</tr>
<tr>
<td></td>
<td>Experimentation Evolution Model [S14]</td>
<td>Areas that the company needs to evolve up to CE</td>
</tr>
<tr>
<td></td>
<td>Experimentation Growth (EG) Model [S15]</td>
<td>Areas that the company needs to evolve up to CE (update of [S14])</td>
</tr>
<tr>
<td></td>
<td>Data-Driven Development Adoption Process [S59]</td>
<td>Steps that a company needs to follow to achieve CE</td>
</tr>
<tr>
<td></td>
<td>eXperimentation Progression (XPro) model [S50]</td>
<td>Steps that a company needs to follow to achieve CE</td>
</tr>
<tr>
<td></td>
<td>The Stairway to Heaven (StH) model [S6] [S34] [S60]</td>
<td>Steps that a company needs to follow to achieve CE</td>
</tr>
<tr>
<td>Architecture Models</td>
<td>Bing’s experiment system architecture [S38]</td>
<td>Architecture for experimentation</td>
</tr>
<tr>
<td></td>
<td>Giaimo and Berger model [S25]</td>
<td>Architecture for experimentation in automotive systems</td>
</tr>
<tr>
<td></td>
<td>Evidence-Based Engineering [S5]</td>
<td>Architecture for experimentation in smart systems</td>
</tr>
<tr>
<td>Logical Flow</td>
<td>High-level flow for A/B test [S37] [S10]</td>
<td>Architecture for A/B Test</td>
</tr>
<tr>
<td>Lifecycle</td>
<td>Logic flow for A/B test [S38]</td>
<td>Architecture for A/B Test</td>
</tr>
<tr>
<td>Management</td>
<td>The experiment lifecycle [S17] [S18]</td>
<td>Experiment lifecycle</td>
</tr>
<tr>
<td></td>
<td>A model of hypotheses engineering in startups [S52]</td>
<td>Management of hypothesis</td>
</tr>
</tbody>
</table>

4.3. Experiments Strategies (RQ3)

We identified several experimental strategies to adopt when performing CE. We perceive that A/B testing is the most applied and known experimental strategy cited in the selected studies. Our findings identified 47 different empirical strategies, including A/B tests. The experimental strategy tests a hypothesis and determines how the software will be updated. They determine how the experiment will be conducted, who will participate in it, in which project phase it will occur, what type of user data will be extracted, and how it will be analyzed.
Analyzing the experimental strategies, we perceived qualitative and quantitative approaches. Also, the strategies have different goals. For example, one experiment can use different strategies to test a hypothesis. An A/B Test can be deployed as a canary release and utilize overall evaluation criteria (OEC) to analyze the results for a quantitative example. Thus, we identified three main goals in the quantitative strategies [Table 4].

We named Controlled experiments (six items) the strategies that deal with the form of the experiments, i.e., how the experiments will be conducted. These strategies normally involve the end-user after developing the product or feature. Similarly, we called Metrics measurement (13 items) the strategies that indicate what type of user data will be extracted, which will also determine how this data will be analyzed. Some of these strategies require code parametrization in the software, while others can be measured externally. Finally, we named Deploy mode (nine items) the strategies that determine who will be selected for the experiment, influencing how the analysis will be conducted. These strategies are always applied in the deployment phase.

For qualitative strategies [Table 4], we identified two main groups with different goals, which we named Participatory requirements (six items) and Partial appraisal (13 items). These groups are other than the qualitative strategies because the participatory requirements strategies need the client or user representative to participate in the requirements elicitation phase. So, it defines who will participate in the experiment and the project phase. The experiments' conduction and the data collected and analyzed shall be selected from the partial appraisal strategies. However, these strategies can also be utilized without a participatory requirement, determining the selection of participants and different project phases. It can even be used with quantitative strategies to extract data that metrics measurement could not obtain.

Table 4. Experiment strategies categorization.

<table>
<thead>
<tr>
<th>Quantitative strategies</th>
<th>Controlled experiments</th>
<th>Metrics measurement</th>
<th>Deploy mode</th>
<th>Participatory requirements</th>
<th>Partial appraisal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/B test, A/B/n test (or multivariate tests - MVT), Quasi-controlled experiments, MVP/MVF, Cross-over experimental design, and multi-armed bandits.</td>
<td>Landing pages, fake door tests, wizard of oz MVP, metaheuristic search, bug reports, support logs, Google analytics, advertising, BASES testing, labs website, internal metrics collection, cognitive mapping, and overall evaluation criteria.</td>
<td>Alpha and beta testing (or early-access), canary releases (or partial rollouts or canary flying), blue/green deployment, gradual rollout, dark launches (or passive launch), parallel execution, serial execution, downsampled execution, selected customers (or proxy/lead users or expert reviews).</td>
<td>Participatory design (or cooperative design, or joint-application design), scenarios, user stories, use cases, joint requirements sessions, and solution/innovation jams.</td>
<td>Case studies (or field experiments or user studies), focus groups, surveys, interviews, observation, mockups (or sketches), prototypes, walkthroughs, feature voting, open testing, customer unit workshop (or customer conference or trade show testing), product seminar, and ethnographic studies.</td>
<td></td>
</tr>
</tbody>
</table>

5. Discussion and Implications

5.1. Continuous Experimentation Expressions and Definitions

We noticed that the expressions "Continuous Experimentation," "Data-Driven Development," and "Innovation Experiment System" are the ones having more
similarities to themes expressed in their definitions. The noticed themes were recurrence, a data-driven approach, and the use of user data to validate the experiments. It indicates that these expressions share the same intentions. However, the papers using the term "Innovation Experiment System" come mostly from the works of one research group [S4][S6][S7][S12][S34][S44][S55][S60][S66]. On the other hand, the expression "Online Controlled Experiment" diverges from the others because almost half the papers use this expression as synonymous with A/B Tests in the online domain. Besides, it has many citations to user data, but citations to data-driven approaches and recurrence are less common. A/B Tests can be used both in a data-driven and non-data-driven company. However, the three other expressions are applicable only in companies intending to be guided by the behavior of the end-users, transforming the possible requirements into hypotheses, and even creating theories through data obtained from the users.

This result expresses the current lack of consensus among researchers about which expressions should refer to the continuous experimentation approach in software development. The bigger quantity of CE usage indicates a trend to adopt this expression. However, the other terms are still very used. We believe that these expressions should be better distinguished to facilitate the research and express different approaches to software experimentation. Future works are needed to make clear this distinction.

Table 5. Phases of experimentation classify CE development processes. In each stage, "S" means "superficial," "D" means "detailed," and "NA" means "not addressed."

<table>
<thead>
<tr>
<th>Process Name</th>
<th>Ideation</th>
<th>Experiment Design</th>
<th>Implementation</th>
<th>Execution</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook's deployment pipeline [Feitelson et al., 13]</td>
<td>NA</td>
<td>NA</td>
<td>S</td>
<td>D</td>
<td>NA</td>
</tr>
<tr>
<td>Hypotheses Engineering [Melegati et al., 19a]</td>
<td>D</td>
<td>S</td>
<td>NA</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Explanatory CTP model for customer touchpoints and feedback data collection [Sauvola et al., 15]</td>
<td>D</td>
<td>D</td>
<td>NA</td>
<td>NA</td>
<td>D</td>
</tr>
<tr>
<td>HYPEx model [Olsson and Bosch, 14]</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>Unnamed model [Eklund and Bosch, 12] [Bosch and Eklund, 12]</td>
<td>S</td>
<td>NA</td>
<td>S</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>The HURRIER Process [Mattos et al., 20b]</td>
<td>D</td>
<td>NA</td>
<td>D</td>
<td>D</td>
<td>NA</td>
</tr>
<tr>
<td>The Qualitative/quantitative Customer-driven Development (QCD) model [Olsson and Bosch, 15a] [Olsson and Bosch, 15b]</td>
<td>D</td>
<td>D</td>
<td>NA</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>Bing's experimentation process [Kevic et al., 17]</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>Experimentation Process Framework [Mattos et al., 18a]</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>Fagerholm et al. process [Fagerholm et al., 14]</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
</tr>
<tr>
<td>RIGHT process model for Continuous Experimentation [Fagerholm et al., 17]</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
</tr>
</tbody>
</table>

5.2. Continuous Experimentation Processes

This study considered only the eleven development processes identified in [Table 3] because its objective is generally to analyze CE's conduction. Two of them were designed for specific software contexts [Eklund and Bosch 2012] [Bosch and Eklund 2012] [Mattos et al. 2020b], and the others are for general purposes. Table 5 shows
these eleven processes classified according to the five phases of experimentation presented by [Auer et al. 2021], identifying whenever a phase is cited superficially, detailed, or not addressed in the model. We consider that a stage is detailed if more than one step in that phase or if the one-step has associated characteristics. This classification shows that none of the processes has all phases detailed. Six processes (54.5%) do not present all the stages. However, all the processes have at least one detailed phase. It indicates that all these processes aim to explore a specific part of the development process guided by experimentation. Since the processes have different clear stages, we understand that the processes have complementary parts. Therefore, the practitioners could benefit not from choosing just one of them but from utilizing some of them together.

5.3. Continuous Experimentation Strategies

The findings indicate a lack of consensus about which strategies to use for a CE process, even with many references about A/B Tests, mostly through collecting metrics. Therefore, more studies are needed to show which strategies should be used in CE processes. Furthermore, it is important to understand the qualitative strategies and their role in CE, particularly when quantitative data does not support answering questions or refuting hypotheses. For instance, it does not indicate which part of the software needs improvement. Qualitative strategies are required in this regard [Ros 2020].

Furthermore, there is a need to discuss whether participatory requirements should be used within the CE process, as stated in some analyzed papers, or should not, as in the processes in the matrix. For example, the works [Melegati et al. 2019a] [Melegati et al. 2019b], and [Melegati et al. 2020c] advocate that the requirement concept is inadequate in the CE context and that the hypotheses engineering should replace the requirements engineering in these cases. According to them, requirements engineering is an important component of "traditional requirements-driven development." However, in "experiment-driven software development," the hypotheses guide the elicitation of the users' needs, and they evolve together with the coding. So, as experiment-driven software development, CE would benefit from hypotheses engineering to better identify, prioritize, specify, analyze, and manage its hypotheses and reduce the waste of resources and time. In this way, the participatory requirements strategies should be adapted to this new concept to gain statistical relevance and be used as useful data-driven strategies in CE processes in software engineering.

6. Threats to Validity

As expected in any empirical study, threats to validity deserve attention. First, regarding reliability, we selected the works from technical literature following good search practices and considering an initial set of secondary studies (Section 2). Although they do not assure full replication, we described the elementary features that allow repeatability of results. Further, we have provided each article's inclusion and exclusion criteria [Table 1] and applied snowballing techniques to enlarge coverage and reduce this threat, including six secondary studies. Also, we have a larger list of selected primary sources than most previously identified secondary studies, including papers that do not appear.

To mitigate the bias of the selected papers and the interpretation bias of researchers, two researchers determined the articles, and two others reviewed the final
set. The research protocol aims at promoting its data traceability. Additionally, an ad-hoc analysis supported this literature study. Thus, the interpretation and synthesis of the articles can be subjective. However, the researchers' experience with coding practices and data synthesis can naturally influence how such an analysis is conducted.

7. Conclusion

Continuous Experimentation has become widely known as a valuable development practice by practitioners and researchers. However, understanding the planning and implementation of CE in SE is still difficult because of the plurality of interpretations in the technical literature. In this context, based on the current body of knowledge examined utilizing a literature study, we characterize CE in its definitions, processes, and experimentation strategies.

We identified results regarding the definitions in which "continuous experimentation" shares the same intentions as "data-driven development" and "innovation experiment system," However, the distinct approaches are different from "online controlled experiment," which is an expression for A/B Test. The lack of a common terminology creates difficulties for researchers to discover and understand the different terms used in the available studies. To the best of our knowledge, no other research has discussed these expressions' differences.

We also identified 24 models regarding CE, eleven of which were development processes. We noticed that these development processes share common activities. Still, each has parts that deal with different experimentation aspects, making them complementary. This plurality of expressions and diverse highlights makes selecting the appropriate process for a specific context a challenge.

Finally, we identified 47 experimentation strategies, categorized them into two groups, subcategorized them into five subgroups, and created a correlation matrix of the processes and the strategies. We noticed that the A/B test is the most applied strategy known by both practitioners and researchers. However, the number of strategies found and the fact that most of them appear in few papers state that more studies are needed to determine the contributions of each strategy for CE.

We also identified that dealing with hypotheses is a little-explored challenge for CE. The relation between the conjectured software properties and requirements is unclear. Therefore, the recently raised concept of Hypotheses Engineering could help to align these approaches in the context of CE in SE. Continuous experimentation is not just collecting data, but it represents a systematic method having its concepts, processes, and strategies. It needs to be understood and aligned with the organization's strategic objectives to succeed in engineering software systems using CE. Therefore, despite its increasing use, it is impossible to observe a common terminology yet to support its characterization and use in SE. Further studies are necessary to organize such concepts and taxonomically represent them to make continuous experimentation less blurred in software systems projects.
Acknowledgments

This work is partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by CNPq. Prof. Travassos is a CNPq researcher (Grant 304234/2018-4) and CNE FAPERJ (Grant E-26/201.170/2021).

References

Wohlin, C. (2014) "Guidelines for snowballing in systematic literature studies and a replication in software engineering"; Proceedings of the 18th EASE.

Selected Publications

[S3] Auer, F. et al. (2021) "Controlled experimentation in continuous experimentation: Knowledge and challenges"; Information and Software Technology 134, 106551.

[S10] Crook, T., et al. (2009) "Seven pitfalls to avoid when running controlled experiments on the web"; 15th ACM SIGKDD.

[S16] Fabijan, A. et al. (2018b) "Online controlled experimentation at scale: an empirical survey on the current state of A/B testing"; 44th Euromicro SEAA, IEEE.

[S38] Kohavi, R., et al. (2013) "Online controlled experiments at large scale"; 19th ACM SIGKDD.

[S40] Lindgren, E. and Münch, J. (2015) "Software development as an experiment system: A qualitative survey on the state of the practice"; ICASD.

[S42] Liu, S. et al. (2019) "Enterprise-Level Controlled Experiments at Scale: Challenges and Solutions"; 45th Euromicro Conference on SEAA, IEEE.

[S53] Melegati, J. (2019) "Improving requirements engineering practices to support experimentation in software startups"; 27th ACM Joint Meeting on ESEC/FSE.

[S56] Olsson, H. H. and Bosch, J. (2014) "From opinions to data-driven software R&D: A multi-case study on how to close the 'open loop' problem"; 40th EUROMICRO SEAA.

[S67] Schermann, G. et al. (2016) "Bifrost: Supporting continuous deployment with automated enactment of multi-phase live testing strategies"; 17th IMC.

