
A Metrics-based Approach for Assessing
Architecture-Implementation Mappings

J. Andres Diaz-Pace1, Rodrigo Cian Berrios2,
Antonela Tommasel1, Hernan C. Vazquez2

1ISISTAN Research Institute – UNCPBA University-CONICET
Campus Universitario Tandil – Tandil – Buenos Aires – Argentina

2Facultad de Ciencias Exactas – UNCPBA University
Campus Universitario Tandil – Tandil – Buenos Aires – Argentina

{andres.diazpace,antonela.tommasel}@isistan.unicen.edu.ar
cianrodrigo@gmail.com, hvazquez@exa.unicen.edu.ar

Abstract. Several automated techniques for assisting engineers in creating
mappings between source code (e.g., classes) and architecture elements (e.g.,
modules) have been proposed. They are generally assessed via precision and
recall metrics. However, these metrics can only be evaluated post-mortem, i.e.,
once an expert created and validated all the mappings. In practice, given a set of
mappings, engineers would like to assess their quality without (effortfully) vali-
dating the whole set. In this context, we explore a suite of quality metrics as an
architectural fitness function for a ranking of mappings, which helps engineers
select a useful list of those mappings. We empirically analyzed the evolution of
our metrics in two projects using different mapping techniques.

1. Introduction
The software architecture of a system is a blueprint that captures the main design de-
cisions for satisfying the quality attributes (e.g., performance, modifiability, reliability,
among others) posed by the system stakeholders [Bass et al. 2021]. These decisions are
reflected in different architectural views (e.g., modules, components), which prescribe
how the system should be implemented. Even when the architectural decisions are appro-
priately communicated to the development teams, there are usually divergences between
the architecture “as designed” (e.g., the module view) and the architecture “as imple-
mented” (i.e., the source code implementing those modules). When these divergences are
not identified and properly controlled by the engineers, the benefits of architecture-centric
development regarding the desired quality attributes tend to vanish, as the implementation
no longer reflects the key design decisions. In this context, performing periodic confor-
mance checks between the architecture and its implementation becomes necessary. A
well-known approach for such checks is Reflexion Modeling (RM) [Murphy et al. 2001],
which analyzes differences between the dependencies defined in the architecture blueprint
and those found in the code. An RM prerequisite is the provision of mappings from source
code elements to architecture elements.

Establishing the architecture-implementation mappings is often a tedious and
error-prone task for engineers, as they must analyze many implementation details. Thus,
several automated techniques (and tools) for assisting in creating and maintaining such



mappings have been developed [Olsson et al. 2022]. These techniques take different in-
formation sources (e.g., the system dependency graph, source code, or descriptions of
architectural components) and have recently incorporated Machine Learning (ML) de-
velopments. Since the output of these tools is often a ranking of proposed mappings,
their performance can be evaluated in terms of ML metrics, such as precision and recall,
which require knowing the valid mappings for a system in advance (ground truth). Un-
fortunately, this situation seldom happens in a project, either because the ground truth is
unknown or an expert must validate all the mappings proposed by a tool, which entails a
considerable effort. Nonetheless, engineers would still need to assess the mappings sug-
gested by a tool and select promising ones, without waiting until the end of the process
(when all mappings are established and validated).

In this paper, we propose a suite of metrics for assessing the architecture-
implementation mappings for a system, assuming they can be somehow ordered
in a ranking. These metrics are taken from the literature [Guimarães et al. 2018,
Lange and Chaudron 2004] and are agnostic of the particular technique or tool being used
for mapping generation. The metrics include aspects such as: level of abstraction, con-
sistency, completeness and code coverage. Unlike existing approaches, we do not require
a ground truth of mappings. In our proposal, the metrics work as an architectural fit-
ness function [Ford et al. 2017], providing hints about the quality (or usefulness) of the
mappings. For instance, if a metric indicates that the number of architectural divergences
increases as more mappings (of a given ranking) are accepted, the engineer might be pre-
fer to keep only the top-k mappings of the ranking. Here, a related question is how many
mappings from a ranking should be accepted. We approach this decision as a parameter
optimization problem, which considers the evolution of the metrics and seeks to identify
a cut-off point in the mapping ranking that (mostly) satisfies the engineer’s preferences
over the metric values. We evaluated the proposed framework in two projects using six
mapping techniques. In those projects, the optimization procedure showed that ≈ 35%
of the mappings (of the rankings) can lead to satisfactory results, in terms of both use-
ful mappings and precision/recall for the process. Although in initial stages, this work
contributes to the practical application of architecture conformance techniques in projects
and tools.

The rest of the paper is organized into 5 sections as follows. Section 2 provides
the main concepts of architecture conformance and defines the mapping problem. In
Section 3, our approach based on mapping metrics and optimization is presented. Section
4 reports on an initial evaluation of the approach with case-studies. Section 5 covers
related work. Finally, Section 6 gives the conclusions and outlines future work.

2. Background
It is common to structure and organize systems in terms of views. On the one hand, we
assume that the system implementation will be described by a code view that captures the
main implementation units and how they depend on each other. An implementation unit
can be materialized by a class (or a package), while a dependency is any method invo-
cation or any other usage relation between classes (or packages). For instance, Figure 1
(right side) shows a simplified code view with five classes. On the other hand, we assume
that the software architecture will be described by a module view that identifies intended
system-level units, called modules, which group cohesive functions. These modules have



dependencies (or interactions) with each other, usually via provided/required interfaces.
The example in Figure 1 (left side) shows a 3-tier architecture with three modules.

A standard approach for linking the architecture and code views is to structurally
map them via the RM mechanisms. This approach requires engineers to establish one-
to-many correspondences between code and architectural elements. In Figure 1, these
mappings are exemplified by the dotted arrows from classes to modules. Based on the
mappings, convergences and divergences between the relations prescribed by the archi-
tecture and those existing in the code can be discovered, as indicated by the green and red
symbols, respectively. Divergences are also referred to as architecture violations.

We define below the main concepts for the architecture-implementation mapping
problem, which serve as a conceptual framework for our proposal.

2.1. Formalization

Let ArchV iew =< A, uses > be a graph (or tuple) that captures a static system view, in
which A = {m1,m2, ...,mN} is a set of N modules and uses is a binary relation between
mi,mj ∈ A denoting that the first module relies on services provided by the second
module. Let CodeV iew =< C, dependsOn > be a graph (or tuple) that represents a
system implementation, in which C = {jc1, jc2, ..., jcP} is a set of P Java classes (with
unique names) and dependsOn is a relation between jck, jcl ∈ C indicating that the
first class requires (or uses) methods defined in the second class. Dependencies between
classes are often due to implementation needs.

The mapping can be seen as a matching between ArchV iew and CodeV iew.
More specifically, let mappings = {(jc,m)|jc ∈ C ∧ m ∈ A} be a partial relation be-
tween elements at different levels of abstraction. This is a partial relation because some
classes might have no correspondences with modules. A module, in turn, can relate to
one or more classes. Along this line, the solution to the matching consists of finding (or
approximating) mappings as a function f : C → A. Given the mappings, three possi-
ble types of differences between ArchV iew and CodeV iew arise: convergences, diver-
gences, or absences. Divergences (violations) are of particular interest for architecture
conformance because they imply that an intended module dependency is not followed in
the code. Violations have quality-attribute effects concerning system modifiability, among
other qualities [Brunet et al. 2012, Bass et al. 2021].

2.2. Mappings as similarity functions

RM does not prescribe how mappings should be established. For instance, engineers
could rely on naming conventions of classes to link them to modules. Mapping generation
is often done in a semi-automated way. In practice, either a tool suggests an initial set of
mappings (or seeds) to the engineer, or the engineer provides an initial mapping that the
tool then uses to infer additional mappings. From this perspective, the tool works as a
recommender system [Robillard et al. 2014] that implements f : C → A and returns a
ranking of mappings. We assume that each particular mapping has a goodness score in
the range [0..1], in which 1 refers to a perfect mapping (or similarity) between a pair of
elements and 0 indicates a very unlikely mapping [Olsson et al. 2022].

A common strategy for generating likely mappings is to compute the similarity
between all pairs (jc,m), being jc a class and m a module, respectively. In other words,



Figure 1. Example of mappings between architecture and implementation views.

we take the Cartesian product C×A, under the constraint that any class can match only a
single module. For a given class, the module with the highest similarity is chosen. Various
similarity criteria between classes and modules can be applied. In this work, we focus on
the following three similarity functions:

• Linguistic similarity (L). It compares the names of the class and module being
mapped. To this end, the original names are split into tokens, and text similarity
metrics are applied. In particular, we relied on a semantic metric provided by the
SEMILAR toolkit [Rus et al. 2013].

• Concern similarity (C). A software concern is any aspect that impacts the design
and implementation of a system, usually with cross-cutting effects on several ar-
tifacts [Robillard and Warr 2005]. For instance, a security concern might affect
several classes and more than one module. Other examples of concerns include
performance, persistence, or error handling. In terms of similarity, we say that a
class matches a module if they “share” the same set of concerns.

• Structural similarity (S). It is based on the graph structure (or topology) of the
module and code views. Similarity is treated as a graph matching problem. This
function departs from an initial set of pairs of graph nodes (seeds) and then prop-
agates the similarity to neighboring nodes, as proposed in [Melnik et al. 2002].
The seeds are either provided manually by the engineer or result from applying
any of the previous functions.

As an example, Table 1 shows a matrix with the similarity scores computed by the
three functions for the modules and classes of Figure 1. The best scores (for the mappings)
are shown in bold. Note that the similarity functions might have different performance for
the same pairs. This effect is caused by the heuristic nature of each function but it might
also depend on class and module information. More details on the similarity functions
above can be found in [Vázquez et al. 2015, Olsson et al. 2022].



GUIAdapter BusinessDataManager BusinessRule
L C S L C S L C S

GUI Elements 0.5 1.0 0.84 0.25 0.0 0.52 0.28 0.0 0.0
Business Rules 0.0 0.0 0.0 0.63 1.0 1.0 1.0 1.0 0.38
Data Manager 0.0 0.0 0.0 0.71 0.0 0.0 0.28 0.0 0.37

Table 1. Examples of mapping scores using different similarity functions.

2.3. Performance evaluation

The traditional assessment of the mappings produced by a similarity function (as sup-
ported by a tool) is based on computing precision and recall metrics [Ricci et al. 2015],
particularly when the ground truth (or reference mappings) is known or the mappings can
be validated by an expert. The precision/recall formulas are given by Equations 1 and 2.

Precision =
mappings ∩ referenceMappings

mappings
(1)

Recall =
mappings ∩ referenceMappings

referenceMappings
(2)

In general, a tradeoff will exist between precision and recall, which is also af-
fected by the goodness value of the mappings. High precision means that the suggested
mappings are correct, while high recall implies that most of the real mappings were sug-
gested. If high recall is accompanied by low precision, there will be some false positive
mappings. In this regard, Figure 2 shows the evolution of these two metrics for a ranking
of 120 class mappings (X axis) produced by a linguistic similarity function. Note also
that the goodness value of the mappings (top-level chart) decreases, suggesting that the
mappings beyond the 40th position (or with a goodness score < 0.5) should be considered
spurious by the engineer. According to the charts, precision degrades significantly after
that point (kstep = 40 ≈ 33% of 120 mappings) at the cost of a slight improvement in
recall. We refer to kstep as the cut-off point of the mapping ranking. Determining a good
enough cut-off (for a given project) is important for the engineer to get the most of the
performance of the mapping strategy (when the ground truth is not available), and it is the
main driver of our approach.

3. Approach
Let us assume a scenario in which an engineer wants to map a code view to a module view
using any automated strategy, and gets a ranking of suggested mappings. The engineer
has to provide the architecture and code views as inputs for a mapping tool. Let us also
assume that the tool is equipped with an arbitrary strategy for generating a ranking of
mappings, as sketched in Figure 3. Since the real performance metrics (of the technique)
will not be known in advance, the engineer can resort to “surrogates” for those metrics that
we will refer to as a fitness function [Ford et al. 2017]. A fitness function is an instrument
that provides an objective integrity assessment of some architectural characteristics. In
our case, we are interested in conformance-related characteristics, and thus, we propose a
suite of metrics for a ranking of mappings. Furthermore, these metrics can be computed at



Strategy: Linguistic similaritykstep = 33%

Figure 2. Evolution of goodness value of a ranking of mappings with respect to
precision and recall.

different cut-off of the ranking to reflect how many mappings are accepted by the engineer
and how much of the final metric values are retained. Note that the proposed metrics do
not require having a ground truth, as it is the case of precision or recall.

Architecture 
(module view)

Implementation 
(code view)

1.
2.
3.
…
n.

Mappings

Ranking

Mapping 
Generation 

Strategy

kstep (cut-off)

Mapping metrics (fitness function)

Engineer

Figure 3. Main concepts of the proposed approach.

For instance, if we look at precision in Figure 4 for the case that the engineer
would accept the full ranking (120 mappings), the global precision (of the technique) is
0.32 (Precision). Alternatively, we can assess the values of other metrics in the radar chart
(e.g., LevelAbstraction, Completeness, Consistency, and PackageCoverage), as depicted
by the blue area. A high value for Consistency suggests that the mappings introduced
several violations, while a high value for PackageCoverage suggests that packages are
evenly mapped to modules. If the engineer would instead take 17% of the mappings, then
different metric values would be obtained, as depicted by the red area. Then, the engineer
could either manually add the rest of the mappings, or re-run the tool with 17% of the
mappings as seeds for getting more mapping suggestions. Specifically, when kstep = 17%
we see that Precision goes up, LevelAbstraction stays the same, and Completeness and



Consistency go down. The mappings seem to have induced fewer violations while also
lowering the package coverage. This means that considering a subset of the ranking
can lead to better performance results. Although Precision is included for comparison
purposes, its values will not be available, as the ground truth is unknown. In practice, the
engineer should monitor the values of the four remaining metrics. Furthermore, an ideal
kstep for the ranking should keep those metrics closer to their best reachable values.

Figure 4. Comparison of metric values at two cut-off points of the ranking.

More formally, we define a fitness function F = {f1, f2, ..., fm} as a collection
of metrics fi, each one having the form fi (A,C,mappingsk) → [0..1]. The mappingsk
parameter results from applying a given mapping strategy S and then using k as the cut-off
point for the corresponding ranking.

3.1. Suite of metrics
Our framework includes four metrics, in its current version, as described below. We
chose these metrics inspired by [Lange and Chaudron 2004] and adapted code coverage
ideas (from the testing field) to architecture conformance checking. All the metrics are
monotonic with either increasing or decreasing trends.

• Level of Abstraction. This metric assesses the “distance” between the module
and the code views, as computed by Equation 3. The smaller the value, the more
detailed the abstraction level of the architecture, and vice versa. For instance, in
the case of one single module mapped to most classes (which would not be very
useful), LevelAbstraction ≈ 1. In the opposite case, if there is a one-to-one
mapping between each class and module, LevelAbstraction = 0. Ideally, an in-
termediate value for LevelAbstraction is expected. This metric can be computed
either for individual modules or the whole architecture. To this end, the code
elements realizing each module (#classes(mi)) need to be identified.

LevelAbstraction(A) =
1

N

N∑
i=1

LoA(mi) =
1

N

N∑
i=1

(1− 1

#classes(mi)
) (3)



• Completeness. A given architecture is said to be complete if, for each module,
there is at least a (mapped) code element that implements the module. The metric
is computed as the ratio between the number of modules that are not mapped
to any class (#unmapped(A)) and the total number of modules, as indicated in
Equation 4. Completeness = 1 means that all modules are mapped to at least
one class. An architecture can be incomplete in two cases: i) some modules are
yet to be implemented, and a partial implementation is being considered, or ii) a
subset of the mappings has been accepted, and there are modules still unmapped.

Completeness(A) = 1− #unmapped(A)

N
(4)

• Inconsistency. An architecture is entirely consistent when no differences result
from the mappings between the module and code views. Three types of differ-
ences are accounted for in this metric: i) dependencies between modules that are
not present in the mapped classes (absences), ii) dependencies between classes
that are not prescribed in the corresponding modules (divergences), and iii) de-
pendencies between modules that also occur between the mapped classes but in
the opposite direction (divergences). Inconsistency is computed as the number
of detected differences (for any of the above types), as shown in Equation 5. High
values imply that the implementation fails to conform to the architecture blueprint
(based on the mappings). This metric is normalized to [0..1].

Inconsistency(A) = #divergences(A) + #absences(A) (5)

• Code coverage (PackageCoverage). This metric refers to the number of code
elements effectively mapped to at least one module (#unmapped(C)). A code
element can be a class or a group of classes, such as a package. In this work, we
consider Java packages as proxies for “modules” in the code. PackageCoverage
bears similarities with the notion of test coverage, revealing how much code
is mapped by the architecture. The metric is analogous to Completeness,
but considering the implementation point of view, as shown in Equation 6.
PackageCoverage = 1 indicates a full architectural coverage of the code.

PackageCoverage(C) = 1− #unmapped(C)

P
(6)

The metrics above can be easily implemented by tool (e.g., a plug-in for an
IDE), which should store the architecture blueprint (e.g., as a list of modules and their
relations) and keep track of their mappings to the source code. We are currently im-
plementing a prototype Eclipse plug-in based on the ideas of the ConcernMapper
tool [Armentano et al. 2015, Robillard and Warr 2005]. The normalization parameters
for the metrics can be determined either from the rankings or from the list of pack-
ages/classes recognized by the tool.



3.2. Optimal selection of the cut-off point

The analysis of the metrics when considering the order of the mappings of a given rank-
ing shows that values increase (or decrease) with different trends. Depending on the
system, certain metrics tend to reach their peak values earlier (in the ranking) while oth-
ers move more slowly. In this context, the engineer should choose a cut-off point kstep
that maximizes the chances for most metrics to reach their peak values. This choice is not
straightforward, as the gain obtained for one metric might be in detriment of another met-
ric, as shown in Figure 4. Let qmetric be the percentage of the metric final value that the
engineer would like to achieve when selecting a subset of the mappings. For instance, if
PackageCoverage had a maximum value of 0.87 (when considering all the mappings),
the engineer could prefer to get at least a 75% of that value when the cut-off is set. In
general, the same kind of preferences can be stated for the four metrics in our framework.

The problem can be cast as a multi-objective optimization that depends on pa-
rameters kstep, qmetric and a particular mapping strategy S, given views A and C along
with the mappings between them. Furthermore, we can define upper, lower and tar-
get values as desirable for each metric to favor values closer to the target and pe-
nalize values outside the predetermined limits. This situation is exemplified in Fig-
ure 5 for the PackageCoverage metric. The target is set to 75% of the (final) met-
ric value (top-level chart), and two cut-offs are proposed, one above the target and an-
other one below it. The “utility” of these points is quantified by means of a so-called
desirability function [Derringer and Suich 1980] for PackageCoverage. A desirabil-
ity function seeks to find preferred response values for another function (i.e., our met-
ric). In the figure, the desirability function (bottom-level chart) favors metric values
being greater than 0.6 (qmetric ≥ 75%). Different stereotypes for desirability func-
tions have been proposed1, such as response-maximization, response-minimization, or
response-target-is-best, among others. We apply these stereotypes to our four metrics
as follows: LevelAbstraction is response-target-is-best, Completeness is response-
maximization, Inconsistency is response-minimization, and PackageCoverage is
response-maximization.

Coming back to our fitness function F = {f1, f2, ..., fm}, we translate each fi
to a desirability function counterpart di, and then combine them into a global function
D =

∏
i di to be maximized, as suggested in [Derringer and Suich 1980]. In this way,

we formulate a single-objective optimization for D and perform a grid search of over
different parameter configurations for kstep and qmetric. Since the rankings are dependent
on the chosen mapping strategy S, it becomes a third parameter for the grid search.

4. Evaluation

To evaluate our proposed approach, we performed experiments with two Java systems, in
which we executed different mapping strategies and also computed the suite of metrics
described in Section 3.1 for the mappings resulting from those strategies. The main goal
was to numerically determine kstep for each system while balancing the values of the
metrics. We were also interested in analyzing qmetric and the role of the mapping strategy
S with respect to the cut-off points.

1shorturl.at/lmDG9



target
qmetric =75%

kstep = 60%kstep = 20%

metric fi

desirability of fi
(maximize 

metric response)

Figure 5. Quantifying preferred values for a metric using a desirability function.

The systems used as case-studies were Health Watcher (HW) and Mobile Me-
dia (MM) [Soares et al. 2002, Young 2005]. HW is a system for collecting and manag-
ing public health complaints and notifications, while MM is a software product line for
mobile applications. The HW codebase has 120 classes (8697 LOC), and its architec-
ture blueprint consists of 7 modules2. The MM codebase has 40 classes (3015 LOC),
and its architecture blueprint consists of 15 modules3. Since the systems were relatively
small (in size), we were able to compute different mapping strategies and understand
the differences between one ranking or another. In both cases, reference mappings were
available [Vázquez et al. 2015] in order to compute precision and recall metrics for com-
parison purposes. The reference mappings were determined by the original system devel-
opers, which is the standard practice in existing approaches to architecture conformance.
We tested the strategies of Section 2.2, either in isolation or combined (e.g., applying
linguistic and structural similarities in a sequence).

The optimization of the desirability functions was implemented in Optuna4, a
hyper-parameter optimization library for efficiently searching parameter configurations
based on Bayesian techniques [Akiba et al. 2019]. Figure 6 depicts the values of the
parameters explored by the optimization for both case-studies (darker points depict the
progress of the Bayesian search). After 2000 trials, the best kstep was 35% and qmetric

was 60% in both systems. This is the optimal cut-off for keeping 60% of all metric val-
ues, despite differences between HW and MM due to characteristics of their module and
code views which might affect the performance of the similarity functions. It should be
noticed that the mappings for the two systems revealed different levels of abstraction. We
observed that a higher qmetric could be taken, at the risk of slightly decreasing the overall
desirability function. This effect seems more noticeable in MM. Regarding the mapping
strategy, a pure linguistic similarity (L) worked best in both systems. When compar-
ing the strategies, Figure 6 shows that other linguistic variants combining structural and

2Notebook with experiments for HW: shorturl.at/bdtG2
3Notebook with experiments for MM: shorturl.at/pDFI0
4https://optuna.org/



hierarchical aspects (e.g., L S H) could work as well. This suggests that S can be an
influential factor when selecting kstep in the rankings.

HW

MM

Figure 6. Slice plots with parameter values explored by Optuna.

In practice, our approach does not include precision and recall in its suite of met-
rics, and they were not part of the optimization process above. Nonetheless, we still used
them in these experiments to have some kind of post-mortem performance indicators.
Figure 7 shows the evolution of precision and recall for different mappings in the rank-
ings. The X axis represents the ordered list of mappings (i.e., classes) considered in the
rankings, which consequently affect the temporal evolution of the values. For instance,
the top-left chart (HW − precision) shows that all mapping strategies degrade over time,
but we can still distinguish two groups with different characteristics. The top-performing
group starts with high precision values (when considering a few mappings) and goes down
slowly around the 45th mapping position (which corresponds to 35% of the mappings).
The strategies based on linguistic similarity (L) are included in this group. The other
group reaches maximum precision values of 0.4 (which is deemed low) and degrades
very quickly as more mappings are considered. These two groups were also detected
for recall (top-right chart), although with the opposite effect, as recall increases steadily
around the 45th position. Analogous trends can be observed for MM around the 15th

position in the X axis.

In general, despite some variations between HW and MM, the plots show that
most strategies yield a good precision for (approximately) the first half of the rankings,
with some exceptions for a few low-performing strategies. We found correlations between
the kstep determined by the optimization and the “natural” cut-offs exhibited by the plots
of Figure 7. We should keep in mind that the computation of our fitness function is not
based on precision nor recall. Thus, this result would indicate that the fitness function was



a good surrogate for the traditional performance metrics for architecture-implementation
mappings. Nonetheless, more experiments and case-studies should be analyzed in order
to confirm these trends.

Figure 7. Precision/recall metrics of different mapping strategies for HW and MM.

5. Related work
Automated and semi-automated techniques for mapping code entities to modules have
been proposed in the literature. These techniques traditionally rely on computing met-
rics and deriving a “similarity” or “module attraction” score for a code entity, and then
assigning the entity to the module with the highest similarity. Other alternatives are
based on training classification models. Various metrics have been introduced to this
end. For example, [Christl et al. 2007] proposed to rely on the number of dependen-
cies between entities and a modularity computation over the module dependency graph,
while [Bittencourt et al. 2010] used latent semantic indexing (LSI). The main difference
between existing metrics and strategies and our approach is that they rely on a mapping
ground truth to assess performance. Existing strategies, however, are good candidates to
extend our framework and the evaluation thereof. Furthermore, the notion of cut-off point
for the mappings has not been explicitly addressed in the previous works.

Olson et al. [Olsson et al. 2022] extended both [Christl et al. 2007]
and [Bittencourt et al. 2010] definitions to include module dependency information
in their textual representation as part of an iterative mapping process. Although
in [Olsson et al. 2022] the authors claim that considering the textual representation of
modules allows to include semantic information in the orphan matching, the chosen
LSI technique might not have been the best option, as it still requires a level of lexical



matching between texts, and sufficient documents for the statistical computations to be
significant. In this sense, recent advances in software engineering embeddings (such
as [Feng et al. 2020] or [Efstathiou et al. 2018]) could help to improve the semantic
perspective of the analysis.

All the reported works in the literature rely on the existence of a ground truth to
train and evaluate the corresponding models. As mentioned, this could require a con-
siderable manual efforts from engineers. Conversely, in our proposal, we do not depend
on having a ground truth, as our suite of metrics focuses on evaluating the quality of
mappings. Thus, our framework intends to be more general and flexible in this regard.

6. Conclusions

In this paper, we have presented a framework based on metrics for assessing the qual-
ity of a ranking of architecture-implementation mappings, as generated by an automated
strategy via similarity functions. This work aims at assisting engineers in selecting a
good-enough list of mappings from the ranking rather than to develop alternative map-
ping strategies. We proposed four metrics based on characteristics of both the module
and code views of the system. These metrics work as surrogates for precision and re-
call, assuming that the latter are not always available in real-life projects. Regardless of
the mapping strategy being used, this is a practical contribution of our approach when
compared to existing techniques.

We have formulated a multi-objective optimization of the metric values using de-
sirability functions to determine the cut-off point for a ranking. We performed an initial
evaluation with two relatively small Java systems that showed encouraging results. In
the parameter optimization, both systems converged to similar values (35% of the map-
ping rankings for 60% of the metric values), which would indicate some regularity in
the evolution of the metrics. As for the mapping strategy, using a linguistic similarity
produced the best outcomes. Nonetheless, we observed different characteristics in the
analyzed systems (e.g., levels of abstraction, number of modules and classes, or usage of
naming conventions, among others). Therefore, these findings should be interpreted as
preliminary and still require further experimentation.

As future work, we plan to add additional metrics as well as more advanced map-
ping strategies, such as [Olsson et al. 2022, Feng et al. 2020, Efstathiou et al. 2018], to
the framework. These extensions could strengthen the approach and help us gain insights
into how promising mappings should be chosen. Regarding empirical studies, we would
like to investigate the effects of using the selected mappings as seeds for additional execu-
tions of the mapping strategy. Finally, to foster practical adoption of these techniques, the
framework and metrics should be integrated with an architecture conformance tool (e.g.,
SonarQube, ArchUnit, or Codiga, among others).

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’19, page 2623–2631, New York, NY, USA. Association for Computing Machinery.



Armentano, M., Soldavini, L., Dı́az Pace, J. A., Vidal, S., and Marcos, C. A. (2015). Con-
formidad estructural de arquitecturas combinado con análisis de impacto de cambios.
In Simposio Argentino de Ingenierı́a de Software (ASSE 2015)-JAIIO 44 (Rosario,
2015).

Bass, L., Clements, P., and Kazman, R. (2021). Software Architecture in Practice.
Addison-Wesley Professional, 4th edition.

Bittencourt, R. A., Santos, G. J. d., Guerrero, D. D. S., and Murphy, G. C. (2010). Improv-
ing automated mapping in reflexion models using information retrieval techniques. In
2010 17th Working Conference on Reverse Engineering, pages 163–172.

Brunet, J., Bittencourt, R. A., Serey, D., and Figueiredo, J. (2012). On the evolution-
ary nature of architectural violations. In 2012 19th Working Conference on Reverse
Engineering, pages 257–266.

Christl, A., Koschke, R., and Storey, M.-A. (2007). Automated clustering to support
the reflexion method. Information and Software Technology, 49(3):255–274. 12th
Working Conference on Reverse Engineering.

Derringer, G. and Suich, R. (1980). Simultaneous optimization of several response vari-
ables. Journal of Quality Technology, 12(4):214–219.

Efstathiou, V., Chatzilenas, C., and Spinellis, D. (2018). Word embeddings for the soft-
ware engineering domain. In Proceedings of the 15th International Conference on
Mining Software Repositories, MSR ’18, page 38–41, New York, NY, USA. Associa-
tion for Computing Machinery.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T.,
Jiang, D., et al. (2020). Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155.

Ford, N., Parsons, R., and Kua, P. (2017). Building Evolutionary Architectures: Support
Constant Change. O’Reilly Media, Inc., 1st edition.

Guimarães, E. T., Vidal, S. A., Garcia, A. F., Pace, J. A. D., and Marcos, C. A. (2018).
Exploring architecture blueprints for prioritizing critical code anomalies: Experiences
and tool support. Software: Practice and Experience, 48:1077 – 1106.

Lange, C. and Chaudron, M. R. V. (2004). An empirical assessment of completeness in
uml designs. IET Conference Proceedings, pages 111–119(8).

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Similarity flooding: a versatile
graph matching algorithm and its application to schema matching. Proceedings 18th
International Conference on Data Engineering, pages 117–128.

Murphy, G., Notkin, D., and Sullivan, K. (2001). Software reflexion models: bridging the
gap between design and implementation. IEEE Transactions on Software Engineering,
27(4):364–380.

Olsson, T., Ericsson, M., and Wingkvist, A. (2022). To automatically map source code
entities to architectural modules with naive bayes. Journal of Systems and Software,
183:111095.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender systems: introduction and
challenges. In Recommender systems handbook, pages 1–34. Springer.



Robillard, M. P., Maalej, W., Walker, R. J., and Zimmermann, T. (2014). Recommendation
Systems in Software Engineering. Springer Publishing Company, Incorporated.

Robillard, M. P. and Warr, F. W. (2005). Concernmapper: simple view-based separation
of scattered concerns. In Storey, M. D., Burke, M. G., Cheng, L., and van der Hoek, A.,
editors, Proceedings of the 2005 OOPSLA workshop on Eclipse Technology eXchange,
ETX 2005, San Diego, California, USA, October 16-17, 2005, pages 65–69. ACM.

Rus, V., Lintean, M., Banjade, R., Niraula, N., and Stefanescu, D. (2013). SEMILAR:
The semantic similarity toolkit. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, pages 163–168,
Sofia, Bulgaria. Association for Computational Linguistics.

Soares, S., Laureano, E., and Borba, P. (2002). Implementing distribution and persistence
aspects with aspectj. ACM Sigplan Notices, 37(11):174–190.

Vázquez, H. C., Dı́az Pace, J. A., and Marcos, C. A. (2015). Uso de ontologı́as para
mapear una arquitectura de software con su implementación. Jornadas Argentinas de
Informática e Investigación Operativa, 44.

Young, T. J. (2005). Using aspectj to build a software product line for mobile devices. In
University of British Columbia, Department of Computer Science.


