
An Overview of Software Architecture Education

Brauner R. N. Oliveira1, Lina Garcés2, Kamila T. Lyra1,
Daniel S. Santos1, Seiji Isotani1, Elisa Y. Nakagawa1

1 University of São Paulo (USP)
São Carlos – SP – Brazil

2Federal University of Itajubá (UNIFEI)
Itajubá – MG – Brazil

{brauner,kalyra 03,danielss}@usp.br, lina@unifei.edu.br

{sisotani,elisa}@icmc.usp.br

Abstract. Software architecture comprises the most relevant structure of a soft-
ware system and is a factor to enable systems to achieve qualities that are cru-
cial to the system’s goals. In this sense, teaching software architecture to stu-
dents and professionals remains a very important task. However, it is still a
challenging matter for teachers and learners on different levels and contexts.
We also lack an updated overview on how such a challenge has been addressed.
This paper presents an overview of software architecture education experiences
and initiatives. For this, we systematically examined the most relevant stud-
ies addressing software architecture education. After analyzing a total of 50
studies, we discuss how software architecture has been taught, the topic mostly
taught, the learning objectives, and the learning methods. Based on our find-
ings, we also present open issues that still remain to be further investigated,
aiming to mature software architecture education.

1. Introduction
The software architecture of a system comprises its main software elements, the relation
among such elements, and their properties [Bass et al. 2021]. Different responsibilities
within the system’s context are assigned to such elements and can drastically affect quali-
ties, such as performance, maintainability, and security, which the system must exhibit to
achieve its goals. In this sense, designing a software architecture capable of meeting sys-
tem requirements is a crucial activity during the early stages of the software development
process. Just as software architecture is relevant to software development, so is teaching
it to students of computer science-related courses and professionals working on software
development. The topic of software architecture has been taught since its emergence in
1992.

Several initiatives and experiences of teaching software architecture have
been published, pointing to what can be considered a consensus: Teaching soft-
ware architecture is a challenging task [Mannisto et al. 2008, Lago and Vliet 2005,
Rupakheti and Chenoweth 2015, Galster and Angelov 2016, Cervantes et al. 2016,
Deursen et al. 2017, Angelov and Beer 2017, Lago et al. 2019]. Several are the reasons
for that, such as students of computing-related degree programs often face a large
gap between low-level courses (e.g., programming and data structures) and high-level



1 INTRODUCTION

courses, in which they have to design effective systems [Garlan et al. 1992]. Without
appropriate directions for teaching software architecture, the already challenging task to
define a suitable architecture becomes a barrier to the proper education of future software
engineers [Garlan et al. 1992]. Moreover, students have difficulties with problem-solving
when the problem can be solved in many ways (i.e., with no single best solution)
[Lago and Vliet 2005, Galster and Angelov 2016], which is the case for software archi-
tecture design. In turn, the architectural design process is difficult to be learned and per-
formed with confidence since many aspects have to be considered when making architec-
tural decisions, and there are many of them to be made during the software development
[Cervantes et al. 2016]. In general, the desired skills of architects are mostly developed
or gained through experience over many years of developing and designing software
architectures [Rupakheti and Chenoweth 2015, Lago et al. 2019, Cervantes et al. 2016].
It means that instructors have to choose those topics that students will face when they go
into the industry and teach them in a way that will ease the path throughout their career.
More reasons make teaching software architecture too difficult, as discussed in depth in
[Galster and Angelov 2016].

Despite several experiences and initiatives already published, to the best of our
knowledge, there is only one study that analyzed how software architecture education
has been addressed [Rodrigues and Werner 2009]. This study examined 37 studies that
reported on software architecture teaching initiatives and, more specifically, it discussed
the maturity of such initiatives, the employment of large and complex systems as part of
the content addressed, and the educational approaches and resources used. However, this
study was published more than ten years. Considering the relevance of investigating soft-
ware architecture education and the continuing evolution of both the state of practice and
state of the art, an updated review becomes necessary to address other research questions
and objectives.

The main goal of this work is to present an overview of software architecture ed-
ucation based on the literature. For this, we examined 50 main studies published on the
matter since 1992 and analyzed different aspects, including the types of experience within
software architecture education, how the subject has been addressed, which topics have
been considered relevant for the learning process, which categories of learning objectives
have received more attention, and the educational approaches that have been employed.
As a main result, we found many different teaching experiences, which have addressed
several perspectives of the learning and teaching process, and various subjects at different
cognitive levels; however, little attention has been given to teaching recent or trending
topics of software architectures, like microservices and cloud-based architectures. An-
other important finding is that software architecture is still challenging and difficult to
teach and learn; therefore, more attention must be paid to maturing and consolidating the
field of software architecture education.

The remainder of this paper is organized as follows. Section 2 presents the method
we followed to search, select, and analyze the studies. Section 3 presents the result and
findings, whereas Section 4 discusses the results and presents the threats to the validity.
Finally, we outline our conclusion in Section 5.

2



2 RESEARCH METHOD

2. Research Method

To provide an overview of software architecture education, we followed the guidelines
proposed in [Petersen et al. 2015] for planning, conducting, and reporting systematic
mapping studies (SMS). In this section, we outline the most important sections of the
SMS protocol, which is fully available online1.

During planning phase, we established the following research questions:

• RQ1. How has software architecture been taught?
• RQ2. What topics have been taught in the software architecture area?
• RQ3. Which learning objectives have been considered in software architecture

teaching?
• RQ4. Which learning methods have been adopted to teach software architecture?

Based on such questions, we developed the following search string, after rounds
of calibration: ((“software architecture”) AND (“education” OR “educational” OR
“course” OR “training” OR “teaching”)). This string was adapted to each database en-
gine and applied in 2021 to the following databases: ACM Digital Library2, Engineering
Village3, IEEE Xplore Digital Library4, and Scopus5. Our search was limited to studies
published since 1992 and, when possible, we restricted the search to the title, abstract,
and keywords of the studies. The number of studies returned by each search engine is
detailed in the SMS protocol provided in the external material. Moreover, we consid-
ered one inclusion criterion (IC) and five exclusion criteria (EC) to support the selection
process:

• IC1: The study reports an experience with software architecture education.

• EC1: The study was published before 1992.
• EC2: The study is not presented in English.
• EC3: The full text of the study is not accessible or available.
• EC4: The study is reported in a book or gray literature.
• EC5: The study is a duplicate of another study included.

The execution phase process is shown in Figure 1. We obtained 4,741 studies
from the database search and, after removing the duplicated studies, we started the first
selection phase with 2,871 primary studies to be analyzed. In that step, all 2,871 studies
had their titles and abstracts read by the reviewers. Sometimes, the introduction section
was also analyzed, enabling a better application of selection criteria. After finishing the
first selection, 80 studies were thoroughly analyzed during the second selection. During
that step, the 80 studies were fully read to confirm whether the selection criteria were
correctly applied or not. As a result, we excluded 32 more studies that were not filtered
through exclusion criteria during the first selection. For the remaining 48 studies, we ex-
tracted all the pieces of information that were registered in our extraction form, including

1github.com/brauneroliveira/SAE-SMS/blob/master/Protocol.pdf
2dl.acm.org
3engineeringvillage.com
4ieeexplore.ieee.org
5scopus.com

3

https://github.com/brauneroliveira/SAE-SMS/blob/master/Protocol.pdf
https://dl.acm.org
https://engineeringvillage.com
https://ieeexplore.ieee.org
https://scopus.com


2 RESEARCH METHOD

the references flagged as potential candidates for snowballing [Wohlin 2014]. After fin-
ishing this step, we performed the backward snowballing procedure, which allowed us
to identify other two primary studies relevant to our research. In total, we included 50
primary studies as relevant for our SMS, as listed in Table 1.

Database
Search

First
Selection

Removal of
Duplicates Snowballing

4,741 studies 2,871 studies 80 studies 50 studies

Second
Selection

48 studies

Figure 1. Review process overview

Table 1. Studies included for analysis phase.

ID Reference
S1 Garlan, D., Shaw, M., Okasaki, C., Scott, C., and Swonger, R. (1992). Experience with a course on architectures for

software systems. In 6th SEI Conference on Software Engineering Education, pages 23–43.
S2 Royce, W., Boehm, B. , and Druffel, C. (1994). Employing UNAS technology for software architecture at the University

of Southern California. In 11th Annual Washington Ada Symposium and SIGAda Summer Meeting (WAdaS/SIGAda),
page 113

S3 Butler, S. (1999). A client/server case study for software engineering students. In 12th Conference on Software Engi-
neering Education and Training (CSEE&T), pages 156–165.

S4 Fairbanks, G. (2003). Why can’t they create architecture models like “developer x”? an experience report. In 25th
International Conference on Software Engineering (ICSE), pages 548–552.

S5 Karam, O., Qian, K., and Diaz-Herrera, J. (2004). A model for SWE course “software architecture and design”. In 34th
Frontiers in Education (FIE), pages 4–8.

S6 Vickers, B. (2004). Architecting a software architect. IEEE Aerospace Conference, pages 4155–4161.
S7 Lago, P. and Vliet, H. (2005). Teaching a course on software architecture. In 18th Conference on Software Engineering

Education and Training (CSEE&T), pages 35–42.
S8 Wang, A. and Stalhane, T. (2005). Using post mortem analysis to evaluate software architecture student projects. 18th

Conference on Software Engineering Education and Training (CSEE&T), pages 43–50.
S9 Jarzabek, S. and Eng, P. (2005). Teaching an advanced design, team-oriented software project course. 18th Conference

on Software Engineering Education and Training (CSEE&T), pages 223–232.
S10 Wang, A. and Sørensen, C. (2006). Writing as a tool for learning software engineering. Software Engineering Education

Conference, Proceedings, 2006(7491):35–42.
S11 Golden, E. and Bass, L. (2007). Creating Meaningful Assessments for Professional Development Education in Soft-

ware Architecture. In 20th Conference on Software Engineering Education & Training (CSEE&T), pages 283–290.
S12 McGregor, J. D., Bachman, F., Bass, L., Bianco, P., and Klein, M. (2007). Using an architecture reasoning tool to teach

software architecture. 20th Conference on Software Engineering Education & Training (CSEE&T), pages 275–282.
S13 Svahnberg, M. and Martensson, F. (2007). Six years of evaluating software architectures in student projects. Journal of

Systems and Software (JSS), 80(11):1893–1901.
S14 Wang, A. I., Arisholm, E., and Jaccheri, L. (2007). Educational approach to an experiment in a software architecture

course. In 20th Conference on Software Engineering Education & Training (CSEE&T), pages 291–298.
S15 Andrade, R. M. and Arakaki, R. (2007). Teaching Software Architecture Quality based on run-time metrics. In

International Conference on Engineering Education (ICEE), pages 1–6.
S16 Chenoweth, S., Ardis, M., and Dugas, C. (2007). Adapting cooperative learning to teach software architecture in

multiple role-teams. ASEE Annual Conference and Exposition, Conference Proceedings.
S17 Gast, H. (2008). Patterns and traceability in teaching software architecture. In 6th PPPJ, pages 23–31.
S18 Mannisto, T., Savolainen, J., and Myllarniemi, V. (2008). Teaching Software Architecture Design. In 7th Working

IEEE/IFIP Conference on Software Architecture (WICSA), pages 117–124.
S19 Boer, R., Farenhorst, R., and Vliet, H. (2009). A community of learners approach to soft ware architecture education.

In 22nd Conference on Software Engineering Education and Training (CSEE&T), pages 190–197.
S20 Wang, A. I. (2009). Post-mortem analysis of student game projects in a software architecture course: Successes and

challenges in student software architecture game projects. 1st International IEEE Consumer Electronic Society’s Games
Innovation Conference, ICE-GiC 09, pages 78–91.

S21 Wu, B., Wang, A. I., Strom, J.-E., and Kvamme, T. B. (2009). XQUEST used in soft- ware architecture education. In
International Consumer Electronics Society’s Games Innovations Conference (ICE-GIC), pages 70–77.

S22 Gu, Q., Lago, P., and van Vliet, H. (2010). A Template for SOA Design Decision Mak- ing in an Educational Setting.
In 2010 36th EUROMICRO Conference on Software Engineering and Advanced Applications, pages 175–182. IEEE

Continued on next page

4



3 RESULTS

Table 1 – Continued from previous page
ID Reference
S23 Giraldo, F. D., Ochoa, S. F., Herrera, M., Neyem, A., Arciniegas, J. L., Clunie, C., Zapata, S., and Lizano, F. (2011).

Applying a distributed CSCL activity for teaching software architecture. In i-Society, pages 208–214.
S24 Wang, A. I. (2011). Extensive Evaluation of Using a Game Project in a Software Architecture Course. ACM Transac-

tions on Computing Education, 11(1):1–28.
S25 Wang, A. I. and Wu, B. (2011). Using game development to teach software architecture. International Journal of

Computer Games Technology, 2011.
S26 Christensen, H. B. and Corry, A. (2012). Lectures abandoned: active learning by active seminars. In 17th Conference

on Innovation and Technology in Computer Science Education (ITiCSE), pages 16–21, Haifa, Israel.
S27 Wu, B. and Wang, A. I. (2012). Comparison of learning software architecture by developing social applications versus

games on the android platform. International Journal of Computer Games Technology.
S28 Urrego, J. S. and Correal, D. (2013). Archinotes: A tool for assisting software architecture courses. In 26th CSEET,

pages 80–88.
S29 Cleland-Huang, J., Babar, M. A., and Mirakhorli, M. (2014). An inverted classroom experience: Engaging students in

architectural thinking for agile projects. In 36th International Conference on Software Engineering (ICSE).
S30 Kiwelekar, A. W. and Wankhede, H. S. (2015). Learning objectives for a course on software architecture. In ECSA,

volume 9278, pages 169–180.
S31 Rupakheti, C. and Chenoweth, S. (2015). Teaching software architecture to undergraduate students: An experience

report. In 37th International Conference on Software Engineering (ICSE), pages 445–454.
S32 Grbac, T. G., Car, Z., and Vukovic, M. (2015). Requirements and Architecture Modeling in Software Engineering

Courses. In Proceedings of the 2015 European Conference on Software Architecture Workshops, volume 07-11-Sept,
pages 1–8, New York, NY, USA. ACM.

S33 Cervantes, H., Haziyev, S., Hrytsay, O., and Kazman, R. (2016). Smart Decisions: An Architectural Design Game. In
38th International Conference on Software Engineering (ICSE), pages 327–335.

S34 Georgas, J. C., Palmer, J. D., and McCormick, M. J. (2016). Supporting software architecture learning using runtime
visualization. In 29th CSEET, pages 101–110.

S35 Ciancarini, P., Russo, S., and Sabbatino, V. (2016). A Course on Software Architecture for Defense Applications. In 4th
International Conference in Software Engineering for Defence Applications, pages 321––330.

S36 Angelov, S. and Beer, P. (2017). Designing and applying an approach to software architecting in agile projects in
education. Journal of Systems and Software, 127:78–90.

S37 Montenegro, C. H. and Astudillo, H. (2014). A role-playing game to teach ATAM (Ar- chitecture Trade-off Analysis
Method) a simulation tool and case study. In IEEE ANDESCON 2014.

S38 Deursen, A., Aniche, M., Aue, J., Slag, R., de Jong, M., Nederlof, A., and Bouwers, E. (2017). A Collaborative Approach
to Teaching Software Architecture. In ACM Technical Symposium on Computer Science Education (SIGCSE), pages
69–80.

S39 Tsur, E. E. (2018). Delivering the fundamentals of software architecture, design and abstraction by developing a ray
tracer for 3-dimensional graphical scenes. Computer Applications in Engineering Education, (November 2017):1–10.

S40 Greising, L., Bartel, A., and Hagel, G. (2018). Introducing a deployment pipeline for continuous delivery in a soft-
ware architecture course. In 3rd European Conference of Software Engineering Education (ECSEE), pages 102–107,
Seeon/Bavaria, Germany.

S41 Vidoni, M., Montagna, J. M., and Vecchietti, A. (2018). Project and team-based strategies for teaching software archi-
tecture. IJEE, 34(5):1701–1708.

S42 Wedemann, G. (2018). Scrum as a method of teaching software architecture. In 3rd European Conference of Software
Engineering Education (ECSEE), pages 108–112, Seeon/Bavaria, Germany.

S43 Lieh, O. E. and Irawan, Y. (2018). Teaching Adult Learners on Software Architecture Design Skills. In FIE. IEEE.
S44 Lieh, O. E. and Irawan, Y. (2018). Exploring Experiential Learning Model and Risk Management Process for an

Undergraduate Software Architecture Course. In IEEE Frontiers in Education Conference (FIE), pages 1–9.
S45 Lago, P., Cai, J., De Boer, R., Kruchten, P., and Verdecchia, R. (2019). DecidArch: Playing cards as software architects.

In 52nd Hawaii International Conference on System Sciences (HICCS), pages 7815–7824.
S46 Ouh, E. L. and Irawan, Y. (2019). Applying case-based learning for a postgraduate software architecture course. In

Conference on Innovation and Technology in Computer Science Education (ITiCSE), pages 457–463.
S47 Backert, M., Blum, T., Kreuter, R., Paulisch, F., and Zimmerer, P. (2020). Software Curriculum @ Siemens — The

Architecture of a Training Program for Architects. In 2020 IEEE 32nd Conference on Software Engineering Education
and Training (CSEET), pages 1–6. IEEE.

S48 Lieh Ouh, E., Kok Siew Gan, B., and Irawan, Y. (2020). Did our Course Design on Software Architecture meet our
Student’s Learning Expectations? In 2020 IEEE Frontiers in Education Conference (FIE), volume 2020-Octob, pages
1–9. IEEE.

S49 Gonçalves, A. C., Vicente Graciano Neto, V., Ferreira, D. J., and Ferreira Silva, U. (2020). Flipped Classroom Applied
to Software Architecture Teaching. In 2020 IEEE Frontiers in Education Conference (FIE), volume 2020-Octob, pages
1–8. IEEE.

S50 Capilla, R., Zimmermann, O., Carrillo, C., and Astudillo, H. (2020). Teaching students software architecture decision
making. In ECSA 2020, pages 231–246.

3. Results

The studies included in our SMS cover a period of 28 years, with three studies published
before 2003 and most of them (47) after that year, as shown in Figure 2. The higher num-

5



3.1 RQ1. How has software architecture been taught? 3 RESULTS

1 1 1 1

2

3

1

6

2

3

1

3

2

1 1

3 3 3

6

2

4

0 0 0 0 0 0 0 0
0

2

4

6

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

Year

N
o.

 o
f s

tu
di

es

Figure 2. Number of studies by year from 1992 to 2020

ber of studies after 2003 may be related to the popularization phase of software archi-
tecture, as discussed in [Shaw and Clements 2006]. The most cited textbook on software
architecture (entitled Software Architecture in Practice [Bass et al. 2003]) was published
in that year as well, and its influence is present in the studies we investigated in this SMS.
Regarding the publication venue, most experiences were published in event proceedings
(i.e., 44 studies), whereas only six works were published in journals.

We also categorized the studies according to a broad classification of teaching ex-
periences, i.e., course, activity, tool, game, and industry training, as shown in Figure 3.
The most frequent category is course, which accounts for 36 studies. This category rep-
resents experiences in universities that have computing-related courses, such as computer
science, computer engineering, and information systems. Studies in this category are still
split into single or multiple experiences. Single experience encompasses studies that re-
ports only one instance of a course whereas multiple experience reports on two or more
(the highest number of course instances reported on was 28). The remaining categories
account for 14 studies split in four additional categories: activities, tools, games, and in-
dustry training. Activities refer to single educational instructions that take place in one
day for a limited amount of time, and have been split into single and multiple experiences
as well (which refers to how many times an activity has been conducted). Games propose
some sort of non-digital game (e.g., card games) to support or provide means for learning.
With the same goal are tools, which represent software developed to specifically support
activities within experiences. Finally, industry training accounts for training experiences
that took place in industry or targeting industry professionals. This category is split into
single and multiple experiences as well.

The following four subsections present the answer for each RQ previously defined.

3.1. RQ1. How has software architecture been taught?
Aiming to understand the curricular program of software architecture courses reported
by the included studies, we investigated whether these courses were planned as a whole
independent course, or were included as a sub-topic within a broader course. We found
that 61.1% (22 studies) proposed an exclusive course to teach software architecture, while

6



3.1 RQ1. How has software architecture been taught? 3 RESULTS

3

21

3

14

2016

Tool

Industry Training

Game

Activity

Course

0 10 20 30 40
No. of studies

C
at

eg
or

y Experience instances

Multiple

Single

Figure 3. Classification of studies

22.2% (8 studies) included software architecture as a sub-topic of a software engineering
or related courses. The remaining studies (16.7%) (6 studies) did not mention it explicitly.
Regarding the course duration, we identified that 24% (12 studies) did not mention its
duration, whereas 48% (24) had reported their duration ranging from five to 12 weeks.
In particular, most courses (52.8% or 19 studies) had a duration of 12 weeks or more.
Considering these numbers, we can say the duration of software architecture courses were
not very different from other regular courses in computing programs (between three and
six months).

Considering only those 36 studies that report an teaching experience during the
courses, we also found that 44.4% of courses (16 studies) were proposed specifically as
part of the curricula of graduate courses, and 30.6% (11) were defined at undergraduate
studies level. Moreover, 11.1% (4 studies) were proposed for teaching software architec-
ture in both undergraduate and graduate levels. Three courses (8.3%) involved industry
professionals whereas two courses (5.6%) targeted graduate students and industry profes-
sionals. These percentages show some evidence that teaching software architecture for
graduated students draw more attention than to others students. Moreover, most studies
(2/3 or 24 studies) presented the number of students that enrolled in the courses. More
specifically, 25% (9 studies) reported the course was lectured to class sizes smaller than
50 students, 27.8% (10) had between 51 and 100 students, 11.1% (4) had between 101 and
150 students, and 1 study had between 151 and 200 students. These numbers show that
software architecture was taught to a good variety of class sizes regardless of the inherent
challenges. The number of students attending a course, however, can be explained by
external factors, such as those related to university characteristics or students’ interests.

Considering the broad classification previously mentioned, for the category activ-
ity, five studies report diverse activities designed and applied to achieve particular learning
objectives. An example is a 2-hour session in which students work as a team to extract ar-
chitecturally significant requirements (S29, previously shown in Table 1). Other examples
of activities are: S23, in which students of six universities distributed over different coun-
tries remotely participate in a computer-aided session to design the software architecture
of a system. In S10 the Writing to Learn method is used for teaching the theory about
software architecture tactics. Students individually wrote down every architectural tactic
that they knew for achieving a list of quality attributes. In these studies, all activities had
their outcomes assessed in different ways, such as student’s feedback (gathered by means
of oral evaluation (e.g., S10), questionnaires (e.g., S23) and controlled experiments (e.g.,
S29 and S49).

7



3.2 RQ2. What topics have been taught in the software architecture area?3 RESULTS

In the category tools, we found three software tools in three studies (S12, S28,
and S34). These tools were developed specifically to assist software architecture courses.
These tools are in fact GUI applications that provide functionality to manage and share
architectural knowledge, or to visualize run-time metrics of a system under execution. Just
one of the tools (S28) supports multi-user interaction, which is done by means of a mobile
application installed in the student’s phones to have access to a centralized repository.

Following the trend of adopting games in software engineering, three games were
proposed for software architecture education (reported in S33, S37, and S45). Two are
card games and one is an RPG (Role-Play Game), a classic and old game style in which
players are assigned to a particular role for a given story. Both card games focus on the ar-
chitectural decision process and can be fully played in sessions around one or two hours.
The RPG focuses on ATAM (Architecture Tradeoff Analysis Method) for evaluating soft-
ware architectures, relying on information from a case and from the ATAM specification
for the assignment of roles to participants. This game was played in 1-hour sessions but
it can take more time as in a real-world ATAM evaluation.

When it comes to industry experiences, we found three studies (S4, S6, and S47).
Two of them (S6 and S47) report on long-term company programs for training profes-
sionals in the software architecture discipline. These programs have been improved over
a considerable amount of years. The other study (S4) presents a particular training expe-
rience involving a development team of a large financial company facing problems with
the integration of legacy systems.

We can observe that the RQ1 was able to provide us an overview of how software
architecture has been taught along several years. We also observe that teaching has fo-
cused on different levels (undergraduate and graduate students, and professionals) with
diverse course duration and formats (e.g., diverse activities) and using different means
(e.g., games and tools). This panorama shows us that teaching software architecture (in-
cluding its reporting through scientific studies) has been a concern and a diversity of
initiatives have emerged dealing with different and complementary perspectives.

3.2. RQ2. What topics have been taught in the software architecture area?

We identified a broad variety of software architecture topics addressed by the studies in-
cluded in our SMS. Figure 4 shows all topics and their frequency (one study sometimes
considered more than one topic). Most of them address quality attributes, such as perfor-
mance, portability, and fault tolerance. This finding was expected as the quality attributes
refer to a basic requirement for addressing core architectural concepts, such as design and
evaluation. The architectural evaluation method ATAM was the second most frequent
topic in the list. ATAM is a well-known method for evaluating software architectures,
and its conduction takes into account a number of core concepts associated with software
architecture, such as quality attributes, trade-offs, scenarios, and decisions. So teaching
ATAM can provide a learning opportunity for several topics at different cognitive levels.

Following ATAM, we found well-known topics, such as architectural design,
styles, patterns, tactics, views, viewpoints, and trade-off analysis. Moreover, quality at-
tribute scenarios and the method ADD (Attribute-Driven Design) were also considered in
a relevant number of studies. Other important topics were also found but addressed in a
few studies, as shown in Figure 4. Moreover other 30 different topics were addressed in

8



3.3 RQ3. Which learning objectives have been considered in software architecture
teaching? 3 RESULTS

14 14

9
8 8 8

7 7
6 6

5
4 4

3 3 3
2 2 2 2 2 2

0

5

10

15

N/S

Qua
lity

 A
ttr

ibu
te

s
AT

AM

Des
ign

Styl
es

View
po

int
s

Des
ign

 P
at

te
rn

s

View
s

Pat
te

rn
s

Tra
de

−o
ffs

Ta
cti

cs
ADD

COTS

Dec
isi

on
s

Doc
um

en
ta

tio
n

IS
O 2

50
10

Driv
er

s
PLA

QA S
ce

na
rio

s

Refe
re

nc
e 

Arc
hit

ec
tu

re
s

Req
uir

em
en

ts 
vs

 A
rc

hit
ec

tu
re

UM
L

Topics

F
re

qu
en

cy

Figure 4. Topics addressed in two or more studies

single studies; they are listed in the external material.

The answer for this RQ shows us that diverse topics in the software architecture
area have been taught. However, the two most taught ones are directly related to qual-
ity attributes, pointing out their relevance in the context of software architecture. We
also observe that those topics were directly influenced by textbooks published on soft-
ware architecture, including [Shaw and Garlan 1996, Bass et al. 2003, Van Vliet 2008,
Clements et al. 2010, Rozanski and Woods 2011], as they have been used as reference in
many experiences. In particular, an influential textbook is the second edition of “Software
Architecture in Practice” [Bass et al. 2003].

3.3. RQ3. Which learning objectives have been considered in software architecture
teaching?

In our SMS, we also investigated the studies regarding their learning objectives. An
important finding is that most studies did not refer to any instrument, such as the
original Bloom’s Taxonomies [Bloom et al. 1956] or Revised Bloom’s Taxonomies
[Anderson et al. 2001], to support the definition of learning objectives (which refer to
explicit formulations of what teachers intend students to learn [Anderson et al. 2001]).
However, most studies (84% or 42 studies) stated explicitly one or more learning ob-
jectives, even when not employing the usual definition given by [Bloom et al. 1956] or
[Anderson et al. 2001]. Only eight studies did not mention learning objectives (S2, S6,
S8, S11, S17, S27, S28, and S50.

Aiming to better understand the studies included in our mapping regarding their
learning objectives, we deeply analyzed and interpreted all 50 studies and classified their
learning objectives within one (or more when pertinent) of the six cognitive levels (i.e.,
remember, understand, apply, analyze, evaluate, and create) [Anderson et al. 2001]. More
specifically, remember refers to the capacity of retrieving relevant knowledge from long-
term memory, understand refers to constructing meaning from instructional messages
(e.g., oral, written, and graphic communication), apply refers to carrying out or using
a procedure in a given situation, analyze refers to breaking material into smaller parts,

9



3.4 RQ4. Which learning methods have been adopted to teach software architecture?3 RESULTS

determining how such parts relate to each other and to an overall structure, evaluate
refers to making judgments based on criteria and standards, and create refers to forming
a coherent or functional whole by putting elements together as well as to reorganizing
elements to create a new pattern or structure [Anderson et al. 2001]. As result, we found
that emphasis was given to four levels: understand, apply, evaluate, and create, while
remember and analyze appear in just a few studies, as illustrated in Figure 5.

22

1615

9

33

0

5

10

15

20

25

Rem
em

be
r

Und
er

sta
nd

App
ly

Ana
lyz

e

Eva
lua

te

Cre
at

e

Cognitive Level

F
re

qu
en

cy

Figure 5. Bloom Cognitive Process Levels addressed in Learning Objectives

Understand appears in several learning objectives (22 studies) related to basic
concepts, such as quality attributes, architectural styles, patterns, etc., whereas apply (15
studies) is related to the application of methods, such as ATAM, ADD, and trade-off anal-
ysis or even abstract concepts, such as styles and patterns. Evaluate (16 studies) is mostly
present due to the high employment of ATAM for architecture evaluation. We understand,
however, that applying ATAM does not imply the capability for evaluating software archi-
tectures as it possibly requires way more efforts to be developed for an individual. Lastly
and perhaps the most expected level is create, which is surprisingly addressed in several
(9) but not all studies, and is concerned with the definition (or creation) of an architecture
for a specific or open-ended problem.

This RQ reveals that the cognitive process levels were considered in the learning
objectives (reported by the studies) but more attention was paid in some of them. Re-
member is not less important than the other levels. In fact, it is required for solving more
complex problems, applying methods or conducting procedures. However, remember as
an ultimate goal for a software architecture course would not make much sense. On the
other hand, analyze is a core cognitive process for many architectural activities but was
not explicitly targeted in learning objectives of most studies.

3.4. RQ4. Which learning methods have been adopted to teach software
architecture?

Different learning methods (which include resources and approaches) were adopted by
one or more studies, as illustrated in Figure 6. In particular, learning methods refer to
methodologies that put the students in a passive or active position towards the learn-
ing objective and uses physical, virtual or theoretical resources to support this process.
However, it is important to highlight that most studies did not explicitly address learning
methods/theories/practices or even the literature related to the education area, as expected
in studies that deal with education.

10



3.4 RQ4. Which learning methods have been adopted to teach software architecture?3 RESULTS

1

1

1

1

1

1

2

3

3

9

15

Team−Based Learning

Self−Directed Learning

Open learning

Experiential Learning

Cooperative Learning

Community of Learners

Flipped Classroom

Game−Based Learning

Collaborative Learning

Project−Based Learning

Learn−by−doing

0 5 10 15

Le
ar

ni
ng

 M
et

ho
ds

1

1

1

1

1

1

1

1

1

2

2

2

3

8

10

Theme−Centered Interaction

Seminars

Paper Reading

Multi−Role

Lesson

Learn−by−doing

Guest Speaker

Group Assignment

Assignment

Writing

Mentoring

Exam

Case Study

Teamwork

Lecture

0.0 2.5 5.0 7.5 10.0

In
st

ru
ct

io
na

l R
es

ou
rc

es
Figure 6. Learning Methods and Resources used by the Studies

We observe that traditional teaching methods that instructors have commonly used
to present content to students (e.g., Learn-by-doing and Lecture) have been also adopted
to introduce fundamental topics/concepts associated with software architecture. The most
frequent approach is Learn-by-doing (found in 16 studies), in which learners perform one
or a few architectural activities, such as design (reported for example in S7 and S18) or
evaluation (e.g., S13 and S20), based on knowledge acquired before or during the actual
experience. Lectures are also part of many experiences reported (10 studies).

Another interesting approach is Project-Based Learning that follows up as an
way to mimic the software development in industry. We observe that projects with dif-
ferent sizes were used, from small projects (as those used in S3, S9, and S39) to large
projects developed in partnership with software companies (as in S1, S2, and S4). In-
dependently from the projects’ size, studies reported advantages of this learning method,
such as promoting soft skills by means of teamwork and developing good practices which
can be later transferred to industry. In some cases, the projects are supposed to deliver
value to real-world stakeholders. In this direction, teamwork is an approach that can
involve different stakeholders and is frequent in our mapping (found in 8 studies).

There are also several other approaches but to a lesser extent in a few studies. For
instance, case studies have been employed as a mean to promote learning based in real-
world systems and architectures. In general, this approach was used in a later phase of the
experiences to promote relevant discussions and show how software architecture concepts
are present in real-world projects (as discussed in S3, S30, and S38). Another perspective
is to ask learners to conduct case studies, gathering relevant information from real-world
software projects, and documenting the findings (as discussed in S38).

Game-Based Learning was found in three studies (S33, S37, and S45) that de-
scribe the development and employment of games to support the learning process of spe-
cific topics, such as ATAM, Software Architecture Design Decision Making (SADDM)
and Attribute-Driven Development (ADD). This approach has only been explored more
recently and the games developed have usually followed a card style, requiring face-to-
face interaction among players. Collaborative Learning also appears in a few studies

11



4 DISCUSSION

(S38, S50, and S23) and refers to practices where all students contribute somehow to
achieve a particular goal such as the definition of an architecture or the writing of a book
with knowledge acquired through the course. Many other interesting learning methods
were explored to teach software architecture, and reported in one or two studies, as illus-
trated in Figure 6.

This RQ shows us that the studies employed a wide range of learning methods and
resources but a great amount of methods were explored in just a few studies. The most
recurring methods emphasize the practical nature of software architecture, as discussed
in [Galster and Angelov 2016]. However, more experiences exploring other methods can
help understand their benefits and drawbacks when they come to the software architecture
education.

4. Discussion
This section presents the main findings of our work, some future research perspectives,
and threats to validity.

The distribution of studies included in our SMS over the years made us believe
that software architecture education&training is still an important topic to be investigated,
even though the first study ever reported dates 1992. Considering the time span analyzed
(1992-2020), 80% of studies were published after 2006 (i.e., the median year); this may
indicate an increasing interest in the topic from the software architecture community, in-
cluding researchers, events, and journals in the field. We also observe that even after many
studies have been conducted and published, the difficulties and challenges of teaching and
learning software architecture still remain.

Another finding worth highlighting is that the target audience of courses (or ex-
periences teaching software architecture) was split into nearly two halves, undergraduate
and graduate (Master/Ph.D.) students. In just one case, professionals were also part of the
target audience. One may believe that teaching software architecture to graduate students
would be more suitable as they are more likely to understand and learn the concepts due
to prior experience with theory and practice. On the other hand, one may find it suit-
able to start teaching undergraduate students so they can understand software architecture
concepts as early as possible, enabling them to develop capabilities to better deal with
real-world software projects.

Regarding the software architecture topics addressed by the studies, an emphasis
has been put on fundamental concepts associated with software architecture as well as
well-known methods, like ATAM. However, new architectural styles and patterns, such
as microservices and serverless, cloud-native architectures, IoT architectures, were not
addressed, although they are trending in several domains and industry projects, so proper
education regarding them can be very relevant. Other current relevant topics related to
continuous architecting in the context of agile development have not been considered;
only one study addresses it (S40). in particular, in this study, students conduct a project in
which a continuous delivery pipeline is developed. Therefore, we can say that the teaching
of software architecture should also encompass new trends, including those relevant to the
current real-world project.

The most recurrent learning methods used to teach software architecture were
those that we expected to find, following the nature of other engineering-related courses.

12



4.1 Threats to Validity 4 DISCUSSION

Less common and intuitive approaches were found as well, showing us a continuous in-
terest in innovating the learning experiences. Teaching with games, for example, has only
been addressed more recently, but its potential can improve the education of new gener-
ations of software architects/engineers. Collaborative approaches, which were explored
in a few studies, can be attractive due to an increase of remote/hybrid job positions (most
of them due to the pandemic). However, many supportive tools and platforms are still
required to enable fast and suitable collaboration.

Our investigation was also interested in finding a correlation between the topics
taught and the learning methods, but no relevant correlation was found in the studies.
Therefore, it would be valuable for future investigation to find if such a correlation exists,
aiming at success in the software architecture education experiences. We also intend to
investigate whether the learning methods adopted are related to the instructional resources
used and whether the learning objectives match the instructional activities employed.

4.1. Threats to Validity

The threats to the validity of our SMS are listed below along with the measures taken
to mitigate their impact. We followed the classification proposed in [Wohlin et al. 2012],
which is composed of four threat categories:

• Internal validity: During the data extraction from primary studies, in some cases, the
authors did not clearly provide information with sufficient detail about one or more
concepts, which may have led us to misconceptions. In this sense, some pieces of infor-
mation had to be interpreted during our analysis. To minimize this threat, we assumed
as less as possible and report the cases in which the information necessary to answer
our research questions were not available or not clear to allow interpretation. In some
cases the reviewers participated in consensus meetings to mitigate misinterpretation of
some data extracted;

• External validity: In this category, another possible threat was the incorrect selection
of primary studies according to the inclusion/exclusion criteria. To mitigate this threat,
we had three reviewers participating during the selection process, ensuring all studies
were reviewed by at least two of them. Consensus was achieved with the help of the
third reviewer when necessary. Also, we created a detailed protocol, which was vali-
dated prior to the execution phase by members of our research group;

• Construct validity: Missing relevant studies was big a concern for this study. In some
cases, a relevant study may not be found as a result of not having any of the search
string terms in their title, abstract, or keywords. To mitigate this threat, we performed
several interactions of a pilot test using the Scopus database and calibrated our search
string analyzing carefully the results and confirming that the terms contained in our
string were capable of finding a list of core studies we already knew prior to this study.
Another construct validity threat might be our judgment concerning the selection of
each study; hence, to minimize this threat, the decisions of inclusion or exclusion of
studies were discussed by all researchers from this SMS; and

• Conclusion validity: Since some data had to be interpreted, there was a potential threat
to the reliability of the results. To minimize this threat, we performed several brain-
storming sessions to better define all elements of the SMS protocol (e.g., research ques-
tions, search string, databases, and selection strategy). Besides, the data extracted was

13



REFERENCES

carefully reviewed by all authors of this work and any conflict was solved in a meeting
using consensus.

5. Conclusion
The knowledge and experience in software architecture (which can be to some extent
gathered via training courses) are sometimes essential for students who initiate in software
companies. Hence, software architecture education is an important subject for curricula
of computing-related courses. In this scenario, we provide an overview of the state of the
art in the field of software architecture education through a deep analysis of 50 studies
published from 1992. Different experiences were found, and we elicited important infor-
mation, including the topics taught, the cognitive process categories (which are usually
aimed by teachers and instructors when defining learning objectives), and the learning
methods used. Such information can provide the current panorama of the field as well as
the future directions to be followed to mature this field. Despite many years of research
in the software architecture area, we can also conclude that education in this area still
remains a challenging task.

Acknowledgment
This study was financed in part by CAPES - Brasil (Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior) (Finance Code 001 and Grant No.: 88882.328820/2019-01),
National Council for Scientific and Technological (CNPq) (Grant No.: 313245/2021-5),
and São Paulo Research Foundation (FAPESP) (Grant No.: 2015/24144-7).

References
Anderson, L., Krathwohl, D., and Bloom, B. (2001). A taxonomy for learning, teaching,

and assessing: a revision of Bloom’s taxonomy of educational objectives. Longman.

Angelov, S. and Beer, P. (2017). Designing and applying an approach to software archi-
tecting in agile projects in education. Journal of Systems and Software, 127:78–90.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice.
Addison-Wesley, 2nd edition.

Bass, L., Clements, P., and Kazman, R. (2021). Software Architecture in Practice.
Addison-Wesley Professional, 4th edition.

Bloom, B., Engelhart, M., Furst, E., Hill, W., and Krathwohl, D. (1956). Taxonomy of Ed-
ucational Objectives: The Classification of Educational Goals: Handbook I Cognitive
Domain. David McKay Company, Inc.

Cervantes, H., Haziyev, S., Hrytsay, O., and Kazman, R. (2016). Smart Decisions: An Ar-
chitectural Design Game. In 38th International Conference on Software Engineering
(ICSE), pages 327–335.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord,
R., and Stafford, J. (2010). Documenting Software Architectures: Views and Beyond.
Addison-Wesley Professional.

Deursen, A., Aniche, M., Aué, J., Slag, R., de Jong, M., Nederlof, A., and Bouwers,
E. (2017). A Collaborative Approach to Teaching Software Architecture. In ACM
Technical Symposium on Computer Science Education (SIGCSE), pages 69–80.

14



REFERENCES REFERENCES

Galster, M. and Angelov, S. (2016). What makes teaching software architecture difficult?
In 38th International Conference on Software Engineering (ICSE), pages 356–359.

Garlan, D., Shaw, M., Okasaki, C., Scott, C., and Swonger, R. (1992). Experience with
a course on architectures for software systems. In 6th SEI Conference on Software
Engineering Education, pages 23–43.

Lago, P., Cai, J., De Boer, R., Kruchten, P., and Verdecchia, R. (2019). DecidArch:
Playing cards as software architects. In 52nd Hawaii International Conference on
System Sciences (HICCS), pages 7815–7824.

Lago, P. and Vliet, H. (2005). Teaching a course on software architecture. In 18th Con-
ference on Software Engineering Education and Training (CSEE&T), pages 35–42.

Mannisto, T., Savolainen, J., and Myllarniemi, V. (2008). Teaching Software Architecture
Design. In 7th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 117–124.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting system-
atic mapping studies in software engineering: An update. Information and Software
Technology, 64:1–18.

Rodrigues, C. and Werner, C. (2009). Software architecture teaching: A systematic re-
view. In 9th IFIP World Conference on Computers in Education (WCCE), pages 1–10.

Rozanski, N. and Woods, E. (2011). Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives. Pearson Education.

Rupakheti, C. and Chenoweth, S. (2015). Teaching software architecture to undergrad-
uate students: An experience report. In 37th International Conference on Software
Engineering (ICSE), pages 445–454.

Shaw, M. and Clements, P. (2006). The Golden Age of Software Architecture: A Compre-
hensive Survey. Technical Report CMU-ISRI-06-101, Institute for Software Research
International.

Shaw, M. and Garlan, D. (1996). Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall.

Van Vliet, H. (2008). Software engineering: principles and practice, volume 13. John
Wiley & Sons Hoboken, NJ.

Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE), pages 1–10.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012).
Experimentation in Software Engineering. Springer Berlin Heidelberg.

15


	Introduction
	Research Method
	Results
	RQ1. How has software architecture been taught?
	RQ2. What topics have been taught in the software architecture area?
	RQ3. Which learning objectives have been considered in software architecture teaching?
	RQ4. Which learning methods have been adopted to teach software architecture?

	Discussion
	Threats to Validity

	Conclusion

