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Abstract. Test smells can reduce the developers’ ability to interact with the test
code. Refactoring test code offers a safe strategy to handle test smells. However,
the manual refactoring activity is not a trivial process, and it is often tedious and
error-prone. This study aims to evaluate RAIDE, a tool for automatic identifi-
cation and refactoring of test smells. We present an empirical assessment of
RAIDE, in which we analyzed its capability at refactoring Assertion Roulette
and Duplicate Assert test smells and compared the results against both manual
refactoring and a state-of-the-art approach. The results show that RAIDE pro-
vides a faster and more intuitive approach for handling test smells than using
an automated tool for smells detection combined with manual refactoring.

1. Introduction
Writing automated tests requires more than just understanding the business rules imple-
mented in the source code, as the test engineer should be skilled enough to build well-
structured test cases. In addition, the complexity of the system under test aligned with the
lack of knowledge and experience may lead test engineers to use bad practices to either
design or implement the test code [Garousi and Küçük 2018].

Bad design practices in the test code are commonly referred to as test smells
[Van Deursen et al. 2001]. Test smells have recently gained importance given their ef-
fects on the performance of software testing activities, especially from a maintenance
perspective [Virgı́nio et al. 2020b, Aljedaani et al. 2021]. For instance, Empty Test is a
test smell that occurs when a test method does not contain any executable instructions.
Since the method does not have a body, the test always passes. When developers in-
troduce behavior-breaking changes, an empty test does not notify alternated outcomes
[Van Deursen et al. 2001, Peruma et al. 2019].

While good testing practices and guidelines can prevent test smells, test engineers
do not always follow them. In particular, whether a software project already comprises
a large set of tests, it may not be cost-effective to create novel tests from scratch. An
alternative is to employ test-specific refactoring strategies to improve the test code quality
without changing its behavior [Van Deursen et al. 2001]. Due to the lack of test suites
aimed to test themselves, there is a need for automated tools to refactor the test code and
keep its behavior.



The literature has introduced a small set of automated tools to refactor test code
[Aljedaani et al. 2021]. For example, RTj [Martinez et al. 2020] is a command-line tool
that supports detecting and refactoring Rotten Green Tests, i.e., a test that passes during
execution but has assertions rarely executed. DARTS [Lambiase et al. 2020] is an IntelliJ
plugin that supports detecting and refactoring three test smells (General Fixture, Eager
Test, and Lack of Cohesion of Test Methods). These tools address a small number of
test smells when using the JUnit framework to develop test cases. [Aljedaani et al. 2021]
point out that the existing tools do not provide details concerning the accuracy of their
refactoring capabilities or usability. To expand the set of refactoring strategies for test
smells, we previously presented a systematic approach to detect and refactor two test
smells: Assertion Roulette (AR) and Duplicate Assert (DA). In addition, we implemented
RAIDE, automated tool support for test smell refactoring [Santana et al. 2020]. RAIDE is
an open-source tool with a user-friendly interface that can detect and refactor test smells
with just a few clicks.

In this paper, we present an empirical study to evaluate RAIDE. We aimed to
answer the Research Question: How does RAIDE support users to detect test smells
and refactor the test code? As the related tools do not support refactoring strategies
for the AR and DA test smells, we compared RAIDE with manual refactoring. We asked
twenty test engineers to refactor test code from two projects. While using RAIDE, the test
engineers had access to an interface integrated into the Eclipse IDE. They could detect and
refactor the test smells. Otherwise, for the manual refactoring, the test engineers used the
tsDetect to detect the test smells. This is a state-of-the-art test smell detection tool
[Peruma et al. 2019], Given that tsDetect does not allow automated refactoring, the
participants had to use their strategies to refactor the test smells.

In summary, we contributed with a controlled experiment to compare RAIDE with
one state-of-the-art approach and discuss the usefulness of an IDE-integrated tool that au-
tomatically detects and refactors test smells. Controlled experiment findings can support
the community of researchers and developers in building and maintaining intuitive tools
to detect and refactor test code automatically. Besides, we collected the participants’ per-
ceptions of the tools, e.g., the RAIDE and tsDetect limitations, a feedback key to the
continuity and evolution of these tools.

The remainder of this paper is structured as follows. Section 2 introduces the con-
cept of test smells and the RAIDE and tsDetect tools. Section 3 details the experiment
design and the main results. Section 4 discusses the evaluation results. Section 5 presents
the threats to the validity. Section 6 presents related work. Section 7 concludes the paper.

2. Background
Test smells result from bad design choices implemented in the test code
[Greiler et al. 2013b]. Smells in test code can affect its quality, mainly understand-
ability and maintainability. Consequently, test smells can reduce the effectiveness of
test cases to detect faults and the developers’ ability to interact with the test code
[Yusifoğlu et al. 2015].

Although there are several test smells, some of them are more prevalent.
[Palomba et al. 2016] empirically evaluated the diffusion of test smells in automatically
generated JUnit test classes in 110 open-source software projects. The results showed that



83% of those classes are affected by at least one test smell. The most frequent test smells
were the AR (54%) and Test Code Duplication (33%). In our study, we considered DA,
once it is a representative type of Test Code Duplication test smell.

In addition, [Peruma 2018] conducted a large-scale empirical study on the test
smells occurrence, distribution, and impact in the maintenance of open-source Android
applications. They also observed that the AR test smell occurred in more than 50% of
the test classes. In a multivocal literature review, [Garousi and Küçük 2018] reported the
most extensive catalog of test smells and a summary of guidelines, techniques, and tools
to handle test smells. The authors pointed out that test smells related to code duplication
and code complexity (test redundancy and long test, respectively) have been the most
discussed ones in the literature.

The recurring number of studies reporting on the occurrence of the AR test smell
[Peruma 2018, Palomba et al. 2016] and the repercussion on test smells related to code
duplication [Garousi and Küçük 2018] led us to investigate those two test smells and then
propose RAIDE. We next introduce these test smells.

2.1. Assertion Roulette (AR)

In JUnit, assertions have an optional first argument of the String type to explain what
each assertion is testing. AR occurs when a test method has several undocumented as-
sertions, making understanding difficult during maintenance and challenging to detect
the assertion if the method fails. Listing 1 presents a code excerpt with multiple asser-
tions without a return message (lines 93 to 95). The example presents a method from the
TestAbstractPartial.java1 test class of the Joda-Time project.

90 public void testGetValues() throws Throwable {
91 MockPartial mock = new MockPartial();
92 int[] vals = mock.getValues();
93 assertEquals(2, vals.length);
94 assertEquals(1970, vals[0]);
95 assertEquals(1, vals[1]);
96 }

Listing 1. Test code with the Assertion Roulette test smell

Possible Effect: Multiple assertion statements in a test method without a descriptive
message can affect test readability, comprehensibility, and maintainability. Multiple as-
sertions make it difficult to detect which assertion gave an error in a test failure.

Detection: To check if a test method has assertions without explanation/message (param-
eter in the assertion method).

Refactoring: To include assertion explanations in each assertion. Listing 2 shows the
Listing 1 code refactored with the appropriate explanations for each assert (text high-
lighted in yellow).

2.2. Duplicate Assert (DA)

DA occurs when a test method tests the same condition multiple times in the same test
method [Peruma et al. 2019]. Listing 3 shows a code excerpt with two assertions with

1Available at https://bit.ly/35Q56KV



90 public void testGetValues() throws Throwable {
91 MockPartial mock = new MockPartial();
92 int[] vals = mock.getValues();
93 assertEquals("Vals size 2", 2, vals.length);
94 assertEquals("Year Equal 1970", 1970, vals[0]);
95 assertEquals("Month 1", 1, vals[1]);
96 }

Listing 2. Test code after refactoring the Assertion Roulette test smell

the same parameters (lines 361 and 363). The example presents one method from the
TestPeriodFormatterBuilder.java2 test class of the Joda-Time project.

356 public void testPluralAffixParseOrder() {
357 PeriodFormatter f = builder.appendDays()
358 .appendSuffix("day", "days").toFormatter();
359 String twoDays = Period.days(2).toString(f);
360 Period period = f.parsePeriod(twoDays);
361 assertEquals(Period.days(2), period);
362 period = f.parsePeriod(twoDays.toUpperCase(Locale.ENGLISH));
363 assertEquals(Period.days(2), period);
364 }

Listing 3. Test code with the Duplicate Assert test smell

Possible Effect: That test smell hinders test readability and maintenance, as there are
repeated assertions (with the same parameters) without explaining the purpose/objective
of the test method. In general, DA creates a scenario that violates the responsibility of
each method to fulfill a single objective.

Detection: To check if the test method contains two or more assertion statements with
the same parameters.
Refactoring: To create one test method for testing the same condition with
different values. Listing 4 shows a code excerpt from Listing 3 refactored
(text highlighted in yellow), which extracts the duplication for a new method
(testPluralAffixParseOrderExtracted).

356 public void testPluralAffixParseOrder() {
357 PeriodFormatter f = builder.appendDays().
358 appendSuffix("day", "days").toFormatter();
359 String twoDays = Period.days(2).toString(f);
360 Period period = f.parsePeriod(twoDays);
361 assertEquals(Period.days(2), period);
362 }
363

364 /* Extracted Method */
365 public void testPluralAffixParseOrderExtracted() {
366 PeriodFormatter f = builder.appendDays().
367 appendSuffix("day","days").toFormatter();
368 String twoDays = Period.days(2).toString(f);
369 Period period = f.parsePeriod(twoDays.toUpperCase(Locale.ENGLISH));
370 assertEquals(Period.days(2), period);
371 }

Listing 4. Test code after refactoring the Duplicate Assert test smell

2Available at https://bit.ly/3oriGL1



2.3. tsDetect
tsDetect has been reported in a recently published literature review as a comprehen-
sive tool for detecting test smells in Java projects [Aljedaani et al. 2021]. The tool cov-
ers 19 test smells with a precision score ranging from 85% to 100% and a recall score
from 90% to 100% in open-source Android apps [Peruma et al. 2019]. Given those pre-
cision and recall scores, researchers built tsDetect-based tools [Virgı́nio et al. 2020a,
Kim et al. 2021]. tsDetect tool indicates the existence of test smells in a test class
based on a three-step detection process (Figure 1): 1) Test File Detector - reads the project
test files; 2) Test File Mapping - links the test files to the production files under test; and
3) Test Smell Detector - detects smells in test code.

Figure 1. Process for running the tsDetect tool

In step (1), Test File Detector generates the Tests.csv file, which contains the
path of the test classes from one software project. That file is input to Test File Mapping.
Next, step (2) establishes the relationship between the test and production classes. It
creates the Classes.csv file, which contains the project name, the path of each test
class, and the production classes. That file is input to Test Smell Detector. Step (3) is
responsible for analyzing test smells for the project based on the Classes.csv file.
The output is the Results.csv file, which indicates the presence (true) or absence
(false) of test smells in the test classes.

2.4. RAIDE
RAIDE is an AST (Abstract Syntax Tree)-based tool developed as an Eclipse open-source
plugin to detect and refactor test smells [Santana et al. 2020]. We reused rule-based com-
ponents from tsDetect and performed improvements to detect test smells. Whereas
tsDetect works as a command-line tool that indicates the presence of test smells,
RAIDE has a user-friendly Graphical User Interface (GUI), which identifies and indi-
cates the exact location (code lines) of the AR and DA test smells. Besides, it includes
one feature for automated refactoring of those test smells.

For the test code refactoring activity to succeed, the detection must be precise and
explicit, pointing to the source code line where the test smell is located. However, not all
tools report the exact location of test smells. For instance, the tsDetect only informs



whether a class is affected by a test smell. Thus, the users need to analyze the entire test
class to identify the test smells and refactor them. Conversely, RAIDE exhibits the test
smells exact location for users and provides a user-friendly GUI.

RAIDE uses graphical components from JDeodorant3, an Eclipse plugin, to
detect and refactor code smells in java code and reuses the components tsDetect tool:
i) AST of the project, responsible for detecting test classes and code structure; and ii) AR
test smell detection rules. In addition, we improved the detection rules to meet the sce-
nario with an empty string (“”) or space string (“ ”) in the explanation parameter and
inform the line affected by the test smell. The way tsDetect implements the DA
test smell detection does not allow code reuse for accurately detecting each test smell
in RAIDE. Therefore, we built modules from scratch in RAIDE to detect and refactor the
DA test smell and to refactor the AR test smell. Some limitations of RAIDE include: i)
the implementation of detection rules is based on JUnit 4, other JUnit versions may re-
quire adaptations in such rules; and ii) the tool’s execution detects the Assertion Roulette
or Duplicate Assert, not both at the same time.

Figure 2 shows the RAIDE tool process to identify and refactor test smells. The
user should provide as input: the test package of the project under analysis, and the
test smell the plugin should detect and refactor. In step (1), the test classes detection
identifies all JUnit classes in the test package. In step (2), the test smells detection
detects a specific type of test smell and presents the test smell detection results in an
Eclipse view. In step (3), manual test smells selection requires the user intervention to
select which test smell instances(s) he would like to refactor. Then, in step (4), Test
smells refactoring shows the user how to refactor the code, and the user can take
the decision of accepting the refactored test code.

Figure 2. Process for running the RAIDE tool

Figure 3 shows a screenshot of the Eclipse IDE with the RAIDE plu-
gin running on the Joda-Time4 project. RAIDE refactored line 131 of method
testGetFieldTypes() after detecting the AR test smell. RAIDE included the ex-
plain parameter “Add Assertion Explanation here” to correct that test smell. The user

3Available at https://github.com/tsantalis/JDeodorant
4Available at https://github.com/JodaOrg/joda-time



must replace the default string with an explanatory message about the assertion to remove
the AR test smell from the code. In Figure 3, it is also possible to see that RAIDE also
detected the AR test smell on line 132. After double-clicking on the detected test smell,
the tool redirects the user to the highlighted line.

Figure 3. Screenshot of the RAIDE plugin under execution

3. Empirical Assessment

In this study, we carried out a controlled experiment to evaluate how the automated pro-
cess proposed by RAIDE assists the test engineers to (i) detect test smells and (ii) refactor
test code. To answer the main research question (RQ), we split it into two sub-RQs:
RQ1) How does RAIDE facilitate the AR and DA test smells detection compared to
tsDetect? RQ2) How does RAIDE facilitate the smelly test code refactoring with the
AR and DA test smells compared to manual refactoring? For RQ1, we compared RAIDE
and tsDetect concerning how both detect test smells and show the results. For RQ2,
we compared refactorings with RAIDE to manual refactorings. Thus, we measured the
participants’ time taken to identify the test smells in the test code with the support of
RAIDE and tsDetect. After, we measured the refactorings time performed manually
and with RAIDE.

Experiment Overview. Before joining the experiment session, the participants
filled out an online form with questions regarding their experience in software program-
ming and testing, Java language, JUnit framework, Eclipse, and test smells. Next, we pre-
sented the concepts about test smells (AR and DA, particularly) and detection and refac-
toring processes. We also informed the objective of the experiment. Figure 4 shows an
overview of the experiment steps. The participants performed two tasks, one for RAIDE
and the other for tsDetect. Each task encompassed the analysis of a different software
project. Before running the experiment, the participants received training on using and
executing the tool shortly after. We used the same project in the training sessions of both
tools (Project 1 - Figure 4). After training, the participants performed the actual experi-
ment tasks, as follows: (i) they used RAIDE and tsDetect to detect two test smells (AR
and DA) and informed the location (code lines) of the test smells, and (ii) they refactored
the code to remove the two test smells. Tasks 1 and 2 are similar, but the participants used
different tools (either Tool 1 or Tool 2) and projects (either Project 2 or Project 3) (Figure



Figure 4. Experiment Flow

4). In the end, the participants answered an online post-survey5, comprising questions
about the experiment execution and their perception of each tool.

Pilot Study. We performed a pilot study with five participants, two graduate stu-
dents, two practitioners, and another acting in both roles. We found that they took 47
seconds, on average, using RAIDE and 15 minutes, on average, using tsDetect to
detect the test smells. The pilot study was critical in reviewing the concepts and standard-
izing the training, especially the commands needed to use tsDetect. It also was helpful
to assess whether the participants could understand the tasks and tools. Data gathered in
this pilot study was not considered in the final analysis.

Participants. We recruited twenty participants, where ten participants (50%)
were from the academy, five participants (25%) were from industry, and five participants
(25%) acted in both roles. All participants held at least a B.Sc. degree, seven participants
(35%) were M.Sc. students, and seven participants (35%) were Ph.D. students. They
come from sixteen different Brazilian institutions, eight different universities (U1 to U8),
and eight different software development companies (C1 to C8). Some of them also be-
long to more than one institution (P1, P7, P12, P15, P17, P18, and P20). In addition,
they have different roles: Agile Coach (AC), Developer (D), Database Admin (DA), Lec-
turer (L), Researcher (R), and Requirements Analyst (RA). Most participants (80%) had
already heard about test smells. Six participants (30%) had specific knowledge about test
smell in either industry or academia. Table 1 shows detailed information. Although the
participant’s profile was collected, we did not investigate the relationship between their
experience and performance in carrying out the tasks.

Experiment Material and Tasks. We selected three open-source projects for
this experiment: Reflections project for training and Joda-Time and Commons-collections
projects for executing tasks 1 and 2 (Project 2 and Project 3 - Figure 4, but not neces-
sarily in that order). We chose the projects considering the limitations of RAIDE and
tsDetect, which support Maven projects and tests with JUnit (version 4). Due to the
size of the projects, we decided to consider only two test classes for the experiment.
Therefore, the Reflections, Joda-Time, and Commons-collections projects would have a
similar complexity level, number of methods, and number of test smells. Regarding the
test smells in the projects, one method has the AR test smell (4 assertions without ex-
planation), and another one has two pairs of the DA test smell (4 assertions in the same
method).

Design and Procedure. In our experiment, we used a crossover design
[Vegas et al. 2015] to avoid the learning effect, as the participants performed two tasks in
a row. The projects and the tools are the independent variables, and time is the dependent

5Available at https://zenodo.org/record/5978022#.Yf55hOrMKUk



Table 1. Participants’ profile and experience (in years)

ID Group Education Profile Institution Programming JAVA Eclipse Testing JUnit Test Smells

P01 1 Ph.D. student R/L U1/U2 10+ 10+ 10+ 10+ 1⊢ 5 ✓

P02 2 M.Sc. student R U1 10+ 0-1 0-1 5⊢ 10 0-1 ✵

P03 3 Ph.D. student R U1 0-1 0 1⊢5 1 ⊢5 1⊢ 5 ✓

P04 4 B.Sc. RA C1 1⊢5 1⊢5 1⊢5 1⊢5 0-1 ✗

P05 1 B.Sc. D C2 5⊢10 1⊢5 0-1 0-1 0-1 ✓

P06 2 M.Sc. student R/L U1 5⊢10 1⊢5 1⊢5 1⊢5 1⊢5 ✓

P07 3 Ph.D. student R/L U1/U3 1⊢5 1⊢5 1⊢5 5⊢10 0-1 ★

P08 4 B.Sc. L U4 5⊢10 1⊢5 1⊢5 0-1 0 ✗

P09 1 B.Sc. D C1 1⊢5 1⊢5 0 0-1 0-1 ✓

P10 2 B.Sc. D C3 1⊢5 0-1 0-1 0-1 0 ✗

P11 3 M.Sc. student R/DA U5 1⊢5 1⊢5 1⊢5 0 0 ✵

P12 4 Ph.D. student R/L U1/U6 5⊢10 1⊢5 1⊢5 0-1 0-1 ★

P13 1 Ph.D. student R U7 10+ 1⊢5 1⊢5 0 0 ★

P14 2 Ph.D. student R U1 1⊢5 1⊢5 0-1 0-1 0 ✩

P15 3 M.Sc. student R/D U1/C4 1⊢5 1⊢5 0-1 0 0 ✓

P16 4 B.Sc. D C5 5⊢10 1⊢5 1⊢5 1⊢5 1⊢5 ✓

P17 1 M.Sc. student R/AC U5/C6 5⊢10 5⊢10 5⊢10 0-1 0-1 ✓

P18 2 M.Sc. student R/D U1/C7 5⊢10 1⊢5 1⊢5 0 0 ★

P19 3 Ph.D. student R U8 10+ 10+ 10+ 10+ 10+ ✓

P20 4 M.Sc. student R/D U1/C8 1⊢5 1⊢5 1⊢5 0 0 ✗

Labels: (✗) Never heard about them; (✓) Already heard anything about itthem, but had never worked with them;
(✩) Knew a little bit about them; (★) Heard about test smells and had already worked with them;

and (✵) Researcher investigating the topic of test smells.

variable of the experiment. During the experiment with each participant, we captured the
audio and the computer screen to count later the time spent by them to detect and refactor
the test smells in each task of the experiment. When a participant inaccurately identified
or refactored the test smell, the researcher reported that the task had not been completed
yet, and the time continued counting until the task be completed correctly.

Data Analysis. We performed the Shapiro-Wilk test, with a significance level of
5%, to verify the data distribution for the data analysis. As a result, the data distribution is
not normal. Then, we selected the Mann-Whitney paired test [Mann and Whitney 1947],
with a significance level of 5%, to answer RQ1 and RQ2 (sub-RQs). We defined the
null hypothesis to investigate the RQ1: The detection time of AR and DA test smells with
RAIDE is similar to detection with tsDetect. Regarding the RQ2, we defined the null
hypothesis: The refactoring time of AR and DA test smells with RAIDE is similar to
manual refactoring.

4. Results and Discussion

This section presents and discusses the results gathered from the empirical assessment.

4.1. Detection of Test Smells (RQ1)

We collected and analyzed the time spent by the participants to complete the task of
detecting and locating the AR and DA test smells with RAIDE and tsDetect to answer
RQ1. The participants completed that task in 63.95 seconds (s) on average with a standard
deviation (sd) of 28.12s using RAIDE and 679.20s on average with sd = 248.71s using
tsDetect. Thus, those values suggest that detecting and locating the AR and DA test
smells with tsDetect is slower than with RAIDE.



The difference between RAIDE and tsDetect is the first one to be an IDE-
integrated tool, in which participants select the test smell they want to analyze and report
the lines with the smells highlighted by the tool. In tsDetect, the participants need
to run three different tools, open a .csv file to check which classes have test smells,
and manually inspect the source code. Therefore, the participants spend most of the time
using the Test File Detector and Test File Mapping tools and performing
adjustments in the .csv files. Although the tools are similar in execution time, they
present a wide difference in their efficiency regarding how fast they place the user in front
of the test smells.

We also analyzed whether there is a statistically significant difference in iden-
tifying the AR and DA test smells. Since our data did not have a normal distribution
(p-value = 7.748e-05), we performed the non-parametric Mann-Whitney test. The test
indicated a significant difference (p-value = 9.537e-07) between the average time spent
using tsDetect and RAIDE. Thus, we refuted the null hypothesis (H01) and answered
RQ1. We also observed that data resulting from the time measures with tsDetect is
more dispersed than the time using RAIDE. Figure 5 shows boxplots on a logarithmic
scale comparing data gathered from RAIDE and tsDetect. There is no overlap be-
tween the boxes of RAIDE and tsDetect, which means a difference between them. In
addition, the longest reported time for detecting the AR and AD test smells with RAIDE
was much shorter than the shortest time to detect them with tsDetect. The partici-
pants using RAIDE achieved similar results in terms of efficiency. However, we can not
say the same when they used tsDetect, which indicates that RAIDE standardizes how
participants detect the AR and AD test smells, regardless of their experience.

Figure 5. Comparison of the test smell detection and refactoring times between
RAIDE and tsDetect

Our findings show that all participants encountered the AR and DA test smells
faster with RAIDE than using tsDetect. The mean difference between the time of each
task was more than 615s, considering all the steps needed to run tsDetect. Moreover,



the participants pointed out many advantages that RAIDE would have over tsDetect
related to identifying the AR and DA test smells. For example, according to P02, RAIDE
stood out because “The learning process is easier and faster, it has fewer steps to take. It
integrates into a development tool with a graphical interface, facilitating its use. It also
identifies the lines that each test smell occurs and suggests refactorings.”

Summary: The AR and DA test smells could be identified ten times faster with
RAIDE than with the state-of-the-art tool. RAIDE offers a better user experience,
e.g., it enables detecting test smells with just one click and highlights their location
in the source code.

4.2. Test Code Refactoring (RQ2)

We collected and analyzed the time spent by the participants to refactor test code with the
AR and DA test smells using RAIDE and tsDetect.

AR Refactoring. The participants could refactor the test code with RAIDE on an average
of 49.9s (sd = 41.35s), while the manual refactoring took 78.30s (sd = 46.39s). As the
refactoring of RAIDE is by line, we need to count the time spent by the user to select
each test smell of the method correctly and refactor them individually. For the statistical
analysis, we performed the Shapiro-Wilk normality test. We found that the refactoring
time of the AR test smell does not have a normal distribution (p-value = 6.607e-05).
Therefore, we also used the Mann-Whitney test. Although the refactoring with RAIDE
has shown similar dispersion to manual refactoring, the results indicated a significant
difference between automated refactoring and manual refactoring (p-value = 0.022). It
leads us to understand that RAIDE has a shorter detection time, which refutes the null
hypothesis (H02). Figure 5 shows boxplots with such comparisons, the median line of
the box of RAIDE is outside the box of manual refactoring, which confirms a difference
between them.

DA Refactoring. Likewise the former, this analysis also considered the Shapiro-Wilk
normality test (p-value = 7.69e-06) beforehand. Data normality test indicated no nor-
mal distribution, then used the non-parametric Mann-Whitney test. Our results showed
a significant statistical difference between the refactoring of DA (p-value = 4.764e-05),
confirming a significant difference between the refactoring with RAIDE and manual refac-
toring. Therefore, we refute the null hypothesis (H02). The average time was 107.2s (sd
= 35.86) and 2.55s (sd = 1.57s) for manual refactoring and using RAIDE, respectively.
Figure 5 shows that the median line of the box of RAIDE is outside the box of manual
refactoring, which confirms a difference between them.

In addition, from a more qualitative standpoint, we also considered the partici-
pants’ comments on the refactoring with and without RAIDE. P01, P13, and P16 indicated
that they would use RAIDE in their projects due to detecting and refactoring the AR and
DA test smells. According to P17, RAIDE can increase productivity in the identification
and refactoring process, and such resources try to decrease the chance of human error. Ac-
cording to P19, RAIDE is convenient because it visually shows the AR and DA test smells,
and their removal is automated, which allows the user to understand the steps taken.



Summary: The difference between RAIDE and the manual process for refactoring
the AR and DA test smells is significant. RAIDE was more than forty-two times
faster than the manual process for refactoring the DA test smell. Also, there is a
consensus regarding the participants’ opinion about RAIDE. There is an indication
that RAIDE makes it easier to refactor the AR and DA test smells.

4.3. Discussion
After analyzing the gathered data, we could infer that detecting the AR and DA test smells
with tsDetectwas the most time-consuming task. That result is related to the fragmen-
tation of the tsDetect, which has three intermediary steps until it presents the results.
We also highlight the tool’s low usability and the laborious process to detect the location
of the test smells in the test code.

The participants’ feedback includes essential data we should consider. For exam-
ple, P01 and P02 reported that although tsDetect treats more test smells than RAIDE,
detecting test smells in the former is more cumbersome. They stated that it is necessary to
manipulate several files, and the command-line interaction might make it difficult for the
identification process. P03 and P06 highlighted that the test smells detection process with
tsDetect takes longer than with the RAIDE. P04 claimed that the process performed
by tsDetect is counterintuitive, i.e., users would need to repeat the steps more often
to learn the process (the order of entry and exit of the files). P06 also mentioned that the
results of tsDetect are not very expressive because it only reports the existence or not
of test smells, which can lead to misinterpretation, especially when dealing with long test
classes.

Furthermore, the tasks performed with RAIDE took an average of 1.94 minutes,
against an average of 14.42 minutes to perform the tasks with tsDetect. In addition,
we limited the number of classes and tested the smells of the projects used to experiment.
Therefore, gathered data indicate that manual test code refactoring would take longer in
real-world environments, even without RAIDE. Indeed, it is necessary to carry out further
studies in this direction to either confirm or refute this statement.

5. Threats to Validity
Internal Validity. It refers to the effects of the treatments on the variables due to un-
controlled factors in the environment [Wohlin et al. 2012]. We used system training to
introduce the tools and participants’ tasks to mitigate this threat. We used randomization
to assign the order of participants to the tasks to mitigate the learning effect. However,
in realizing the assigned tasks, some participants presented difficulties in manually ac-
complishing the refactoring task (i.e., using the tsDetect). In this case, we guided
them to find a solution that may positively influence those participants’ performance us-
ing tsDetect.

External Validity. It concerns whether the results can be generalized outside the
experimental settings [Wohlin et al. 2012]. To mitigate this threat, we counted on experts
with different backgrounds. Although there was not a big difference in the number of
practitioners and academics, we introduced the detection and refactoring concepts with
the tools using a training system. Although the participants had no experience in the
context of the experiment, they were skilled enough to perform the tasks.



Construct Validity. It represents the cause and effect concepts to measure in
the experiment through dependent and independent variables [Wohlin et al. 2012]. In this
study, we did not compare RAIDEwith a tool that presents the same features. tsDetect
tool detects several test smells but does not assist in refactoring them. Conversely, RAIDE
detects two test smells and support their refactoring. In the end, we could compare the
effects of both manual and automated refactoring. Also, we conducted a pilot study that
helped us improve the experiment design and materials.

Conclusion Validity. It refers to the extension of the conclusions about the rela-
tionship between the treatments and the outcomes [Wohlin et al. 2012]. The main threat
to conclusion validity is the small size of the sample. Although we carried out the con-
trolled experiment with 20 participants, we selected most of them with some prior knowl-
edge about test smell.

6. Related Work

[Greiler et al. 2013a] introduced the TestHound tool, which performs a test code static
analysis to detect the smells: Dead Field, General Fixture, Lack of Cohesion of Test
Method, Obscure In-Line Setup, Test Maverick, and Vague Header Setup. The tool sug-
gests refactoring candidates for removing test smells. The authors conducted a study with
users and showed that the tool helps developers understand and adjust the test code.

[Baker et al. 2006] proposed TRex, an Eclipse plugin that detects refactoring op-
portunities to Standardized Tree and Tabular Combined Notation (TTCN-3) test suites.
TRex calculates metrics to measure the overall quality of a TTCN-3 test suite and applies
a pattern-based analysis to suggest candidate test refactorings. Its accuracy in detect-
ing/refactoring test smells in TTCN-3 test suites, and evaluation with practitioners are
unknown.

[Martinez et al. 2020] released RTj, a command-line tool that performs static and
dynamic analysis to detect rotten green test smells. RTj also suggests to developers can-
didate test refactorings. The authors pointed out that RTj detects some false positives due
to using conditionals or multiple test contexts. However, there are no details concerning
the accuracy of its refactoring capabilities nor experiments validating its usability.

[Lambiase et al. 2020] released DARTS (Detection And Refactoring of Test
Smells), a plugin for IntelliJ that utilizes information retrieval to detect three smells (Gen-
eral Fixture, Eager Test, and Lack of Cohesion of Test Methods). They built the tool on
top of TASTE [Palomba et al. 2018], a textual-based detector with an overall f-measure
of 67%, 76%, and 72% for the three test smells mentioned above, respectively. The tool
also offers refactoring support. As for the refactoring support available in the tool, DARTS
exploits the IntelliJ APIs to ensure that the refactored code is compilable and error-free.

Compared with the related tools, RAIDE expands the support to detect and refac-
tor other test smells [Santana et al. 2020]. During plugin development researchers with
experience in test smells validated the automated refactorings applied by RAIDE.

7. Conclusion

Software test code refactoring is highly dependent on automated support, so it might be
cost-effective. Current literature encompasses a few tools supporting automated test code



refactoring. However, there is little evidence of automated support to handle test smells
refactoring. In prior work, we introduced RAIDE, an Eclipse IDE plugin to automate the
test smells detection and refactoring from the JUnit test code. That tool can handle As-
sertion Roulette and Duplicate Assert test smells in the current version. In this paper, we
presented an empirical assessment of the RAIDE. We carried out a controlled experiment
with twenty participants to evaluate the tool. The results indicate that RAIDE can detect
test smells faster than a comparable state-of-the-art approach. Also, RAIDE was able to
refactor a test method in a tiny fraction of time. In particular, the results were very favor-
able compared to the state-of-the-art approach. Future work directions include extending
the RAIDE to consider other test smells and refactoring techniques. Furthermore, there
is a need to conduct further empirical studies to validate whether the tool is valuable and
effective in real-world practice.
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