

Towards an ontology-based recommender system
for agile practices adoption

M. Luciana Roldán1, Verónica A. Bollati2, Silvio M. Gonnet1

1Instituto de Desarrollo y Diseño (INGAR) – CONICET / UTN
Avellaneda 3657 – Santa Fe – Argentina

2UTN Fac. Reg. Resistencia / CONICET,
Resistencia, Argentina.

{lroldan,sgonnet}@santafe-conicet.gov.ar, vbollati@gmail.com

Abstract. Choosing the right agile practices to be adopted in a software
development process is complex, especially for organizations with little
experience and a high turnover of human resources. To select the best
practices, it is necessary to consider the characteristics that describe the team,
the project, and the context in which they will be applied. In this paper, we
propose an ontology-based agile practices recommender. The ontology was
built and populated with knowledge obtained from software projects of
Argentine organizations. The recommender applies the FP-Growth algorithm
to find the most suitable practices for the target profile. In addition, it
discovers potential conflicts between the profile and the recommended
practices.

1. Introduction
In the last decades, the software development industry has been increasingly adopting
agile methods and practices instead of traditional software development methods as they
are more flexible and can bring benefits such as handling requirements changes,
productivity gains, and business alignment [Campanelli et al. 2018]. In fact, the well-
known survey of Digital.ai [Digital.ai 2021] reports that the two most urgent reasons for
adopting Agile are the speed and flexibility required by working environments that
continue to be both unpredictable and volatile (64% Enhance ability to manage
changing priorities; 64% Accelerate software delivery). These are closely followed by a
continued need to focus on alignment across teams to streamline the software delivery
process (47% Increase team productivity).

 Digital.ai survey also shows that organizations still face a variety of challenges
as they introduce agile techniques, practices, and tools. In fact, 30% of respondents
identified no fewer than ten different challenges faced while adopting Agile. The key
challenges organizations face when adopting Agile have remained largely unchanged
for the past several years. Challenges with organizational culture, resistance to change,
and lack of skills and experience continue to be problems.

Choosing the right strategy for the adoption of agile practices is key for
organizations to take advantage of the benefits of agile and overcome the common
problems found in the adoption process and achieve their business goals. Currently, the
main difficulty in the agile adoption process lies in selecting the right set of practices for

each situation. Numerous research efforts have been reported to address this problem,
but there is still no definitive answer [Kurapati et al. 2012; Letelier and Penades 2017;
Nishijima and Dos Santos 2013].
 The complexity of the agile adoption process is high, especially for
organizations with little experience and a high turnover of human resources. Often,
companies hire external coaches to provide initial training and kick-start agile
development [Stray et al. 2020]. However, consulting costs are high, especially for
organizations in countries with economic difficulties, such as Argentina. To select the
right practices for an organization, it is important to have experience with agile
development projects to know which practices will give the best results, and to consider
the characteristics that describe the team, the project and the context in which the
practices will be applied. In today's organizations, it is common for two teams in the
same organization to have different characteristics in terms of the background of their
members, the history of projects developed in the past, and the environment in which
they are immersed (such as legal, budgetary, technological), which adds complexity
when selecting the optimal set of practices for a particular “profile”
(team/project/context).

 To overcome those issues, in this work a preliminary agile practices
recommender system is proposed. The system is based on an ontology that represents
agile knowledge gained from literature, technical websites and forums, and industry
experiences. It constitutes a decision support tool for the process of adopting agile
practices. The system was developed on top of an Agile Practices Ontology (AgiPrOnt)
to provide an organization or team with the N agile practices best suited to adopt in a
particular software development project and context. The contributions of this paper are:
an ontology of agile practices, a recommender system based in that ontology, and a
conflict resolution mechanism.

 The rest of the paper is organized as follows. Section 2 presents related works
regarding ontology-based recommending techniques and approaches for Agile process
adoption. In Section 3, we present the research methodology followed. In Section 4, we
present an overview of the Agile Practices Recommender system. Then, the details of
construction and population of the AgiPrOnt ontology are given, and we expose the
recommendation algorithm and the conflicts detection approach. In Section 5, some
aspects of the proposal are evaluated, and the limitations are discussed. Finally, in
Section 6 the conclusions are presented.

2. Related works
Recommender systems (RS) have been proposed as a decision-making strategy for users
in complex information environments. Recommender systems [Isinkaye et al. 2015]
handle the problem of information overload that users normally encounter by providing
them with personalized, exclusive content and services. They are also a means of
assisting and augmenting the social process of using recommendations of others to
make choices when there is not sufficient personal knowledge or experience.
 Ontologies play an important role in knowledge representation as well as in
knowledge sharing and reuse in recommendation systems. Previous studies have shown
that the incorporation of an ontology domain knowledge to a recommender improves
the accuracy and quality of recommendations as well as alleviates other drawbacks

associated with conventional recommendation techniques such as cold-start and rating
sparsity problems. The effectiveness of ontology-based recommender systems depends
mainly on the completeness and accuracy of knowledge maintained in the ontology
domain knowledge [Tarus et al. 2018]. RS use domain ontologies to establish the
relationships between users and their preferences about the recommendation subject.
The semantic information of an item includes the attributes, the relationships among the
items, and the relationship between meta-information and items. Many RS employ
domain ontologies to measure user preferences with content elements. Moreover, using
knowledge about items and users helps to produce a recommendation based on
knowledge and reasoning about which item meets the needs of the users [Burke 2000].

 There has been prolific literature regarding approaches for agile process
implementation and tailoring. A probabilistic model to identify problems related to a
project and the team is defined in [Perkusich et al. 2013]. The approach is aimed to help
Scrum Masters to be aware of the project’s problems and have enough information to
guide the team and improve the project’s chances of success. The model is a Bayesian
network that represents a Scrum-based software development project composed by one
development team. One of the limitations of this work is that it focuses on the Scrum
framework, which makes it useful only for development projects that apply Scrum.

 AgileRoadmap [Letelier and Penades 2017] is an approach for implementing
ASD in companies. The proposal includes a model and a strategy for agile
implementation, which integrates the most popular agile practices, focusing on the
practice application and not on the application of a particular method.

 In the literature, some authors propose ontologies, taxonomies, or metamodels to
describe ASD knowledge. However, most of these works focus on one or two methods
or a bunch of practices and do not cover comprehensively the knowledge related to
ASD, regarding the variety of agile practices, characteristics of the teams that use them,
and the projects and the environments where they are applied [Júnior et al. 2021].
[Minoli 2011] proposes a framework that suggests solutions tailored to the
configurations of projects in the context of A-GSD (Global Agile Software
Development). The ontology-based solution framework aims to classify, organize, and
unify all the existing knowledge on A-GSD, for which it includes an ontology that
represents the knowledge in terms of agile and distributed projects features, and a tool
that uses the knowledge of this ontology to make available to the community the
existing knowledge about A-GSD. [Ortega-Ordoñez et al. 2019] suggested a common
and consistent terminology that allows sharing the knowledge generated from
implementing agile approaches in the software processes. The proposal focuses on
facilitating the assessment of the agility of the software processes, from the
identification of the relationships between the elements of the software processes and
the agile principles and values. These ontologies lack concepts to characterize the
teams, projects, and contexts where agile processes were performed making it difficult
to reuse the shared knowledge in the ontology.

 [Kiv et al. 2019] proposed an ontology for representing agile methods
knowledge, so that the knowledge and experience on agile adoption reported in the
literature may be reusable and systematic. This work has similar goals as ours, as it
includes concepts to define certain characteristics of the situation of an organization, its
goals, and the practices the organizations want to adopt. The approach is based on the

knowledge of ASD cases studies and a set of inferences rules. It provides a list of
potential problems that could arise when a team adopts a practice, and, for each
problem, propose a solution. However, it requires the user to have expert knowledge
about practices to adopt, since he/she must decide in advance which practices the team
will adopt. In addition, the tool does not provide support to find teams/organizations
with similar characteristics to the user organization.

 To the best of our knowledge, no proposal integrates a recommending algorithm
based on team, project, and context characteristics, with ontologies to suggest a starter
pack of practices to a team initiating a new agile project.

3. Methodology
We employ the Design Science Research paradigm, as the research method adopted in
this work, which is concerned with extending “human and organizational capabilities by
creating new and innovative artifacts” [Peffers et al. 2007]. It comprises five steps,
which are organized in an iterative process: (i) Problem identification and Motivation,
(ii) Definition of the objectives for a solution, (iii) Design and Development, (iv)
Demonstration, (v) Evaluation, and (vi) Communication.

 Regarding the Problem identification and motivation step, the problem was
identified by the second author when working as a consultant in some organizations on
the Northeast region of Argentina. Additionally, the “lack of skills and experience” has
been identified as a barrier to Agile adoption from multiple studies [Digital.ai 2021;
PMIBA 2020]. The problem means that organizations are forced to invest heavily in
training programs and hiring coaches to gain insight into which practices to select when
facing a new project.

 At the Definition of the objectives for a solution step, we decided to develop
AgiPront, an ontology-based recommender system for agile practices adoption. As
requirements of the proposed approach, we defined that it must: (R1) allow identifying
the team’s characteristics, the project characteristics, and the context in which the new
project will be inserted, (R2) provide meaningful and comprehensive data on agile
practices, as well as an assessment of the impact of their use on past completed projects,
and (R3) recommend a set of agile practices appropriate to the characteristics of the
team, project, and context of the organization that uses the tool.

4. The Agile Practices Recommender System
In this section, we address the Design and Development step prescribed by the followed
research methodology, outlining the system architecture first. The main stakeholders of
the Agile Recommender Systems are: i) the Target Agile Profile (TAP), a person, team
or organization that requires support to select the set of best practices to adopt for a
given project and context; ii) the Expert, who is the responsible to feed the ontology
with ASD knowledge from several sources like the literature, web forums, self-
experience, open projects repositories, etc. Another actor (not shown in Figure 1) is the
Surveyed Agile Profile, which interacts with the system by providing data on cases
studies, and data from completed ASD projects.

 In Fig. 1 the central component of the RS is the semantic model, formalized in
an ontology, which represents the concepts involved in Agile Software Development. A

web questionnaire is used to collect part of the data required to feed the ontology, by
inquiring to diverse agile organizations about their characteristics, the practices they
employed in their projects, and the contribution of each practice adopted to the success
of the project. The Profile Loader component populates the ontology from the
knowledge obtained with the questionnaire. A SPARQL endpoint is a service that
allows applications to perform SPARQL queries on data stored in RDF format. Through
the Agile Knowledge Interface, users can access the ontology and employ it for
learning/training purposes. The Recommender Algorithm consists of three parts: a) a
profile matching stage, where the characteristics of the Target Agile Profile are
identified and used to find other similar profiles in the knowledge base; b) a stage in
which a set of the most successful practices used jointly by similar profiles is obtained, ,
which constitute the practices that are candidates for recommendation; and c) a conflicts
detection and ranking stage, where rules are applied to discover potential conflicts
among the candidate practices.

Figure 1. Overview of the Agile Practices Recommender System

4.1. The AgiPrOnt ontology
To develop AgiPrOnt, an ad-hoc methodology was applied that comprises four stages,
which are common to most popular ontology development methodologies [Suárez-
Figueroa et al., 2012]: i) an Ontology requirements specification stage, which consists
of identifying the purpose for constructing the ontology and set its scope; ii) a
Conceptualization stage, which consists of organizing the involved concepts in an
informally perceived view of the domain and, then, converting it in a semi-formal
UML-based specification; iii) a Formalization stage, which comprises the
implementation of the ontology using a formal language, as well as populating it with
knowledge from different sources; and iv) an Evaluation stage, which allows making a
technical judgment of the ontology quality and its usefulness with respect to the
requirements specification, competency questions and/or the real world.

 The requirements specification stage began with the elicitation of a set of
competency questions, which, due to lack of space, are given in [Roldan et al. 2022]
(AgiPrOnt Competency questions file).

 At the conceptualization stage, we decided to build AgiPrOnt as a domain-
specific ontology based on the concepts defined by the Software Process Ontology

(SPO) [Oliveira Bringuente et al. 2011]. SPO is a core ontology that is part of SEON
(Software Engineering Ontology Network) and provides the general concepts for
software processes. SEON [Borges Ruy et al. 2016] provides a network of Software
Engineering reference ontologies, and mechanisms to derive and incorporate new
integrated subdomain ontologies into the network. The foundational layer of SEON, is
the Unified Foundational Ontology (UFO) [Guizzardi 2005], which is developed based
on a number of theories from Formal Ontology, Philosophical Logics, Philosophy of
Language, Linguistics and Cognitive Psychology. Then, the definition of the concepts
and relationships of AgiPrOnt was made by extending the specific concepts and
relationships included in SEON network ontology, particularly in UFO and SPO.

 From the elicited competency questions, we identified the terms of the ASD
domain. Initially, we generated a list of terms without considering the existence of any
overlapping, the possible relationships among them, or the properties that characterize
each concept. Then, each term was defined as an extension of the general concepts in
the upper ontologies.
 To organize the concepts in AgiPrOnt, four semantic submodels were defined
(Fig. 2): the Fundamental Agile Concepts Model (FACM), the Agile Practices Model
(APrM), the Agile Characteristics Model (AChM), and the Agile Assessment Model
(AAM). The FACM Model comprises the definitions of fundamental concepts of ASD
and a canonical model for representing agile developing processes. Agile Values are part
of the Agile Manifesto, which defines the philosophy of agile [Beck. K. et al., 2001].
From these values, twelve AgilePrinciples are derived, which enable mapping the agile
practices to the business goals the organizations want to achieve. Agile values and
principles are implemented through Agile Practices. An agile practice is an activity or a
mode of working, which can be applied repeatedly, thus performed regularly (in the
case of an activity) or enforced systematically (in the case of a mode of working)
[Meyer 2014].

Figure 2. Ontology Conceptual Model

The application of agile practices gives rise to different artifacts or work products
(Artifact). Some practices can be part of a specific Agile method, although it is not
required for a practice to be part of a method (Comprises relationship).
 The concept of AgileProfile is key in this proposal, as it acts as the “container”
of the concepts AgileTeam and AgileProject. An agile project is a software development
project that follows an extremely iterative and incremental life cycle, where the
development team works in a highly collaborative and self-organized manner. An agile
project is composed by events. Events are time-boxed, which means that they have a
fixed and predefined maximum duration and can be classified as Iterations or Meetings.
An Agile Team is defined as a set of persons involved in the development of the project.
An organization may have multiple projects in progress, and different teams in charge
of their development. Each Team Member, who participates in an agile team, has a
specific Role (a set of functions that are fulfilled within the agile team).

 The APrM model represents that an AgilePractice can be an
OrganizationalPractice, a TechnicalPractice, or both
(TechnicalOrganizationalPractice). While organizational practices affect the cost,
schedule and team sustainability of a project, the technical practices support product
quality and effectiveness. The model includes some relationships among practices,
which are defined by the Agile Alliance Glossary [Agile Alliance [S.d.]]: composedBy
alsoKnownAs, and originatedFrom. Other relationships included in the model are:
inConflictWith (to indicate that two practices cannot coexist in the same project),
isComplementaryTo (to represent that if a practice A is adopted, then, it is highly
recommended to adopt also practice B) and requires (to represent that if practice A is
adopted, practice B must be also adopted for A to work properly).

 The AChM Model includes the concepts for representing the properties or
attributes that characterize to the agile teams, the projects they carry on, and their
contexts. The central concept is AgileCharacteristic, which is specialized in
TeamCharacteristic (how the team is composed and how their members interact),
ProjectCharacteristic (budget, schedule, resources, and technological aspects of the
system or software to be developed), and ContextCharacteristic. The last one refers to
the environment of a Team+Project pair, and it is specialized in
ExternalEnvironmentCharacteristic (aspects from the outside of the organization) and
InternalEnvironmentCharacteristic (aspects from the inside of the organization).

 The AAA model represents the knowledge about the success of the practices
adopted by agile profiles. The recorded knowledge from past experiences is useful for
new agile teams that face a new agile project in a new context. To explicitly represent
this knowledge, the model incorporates a relationship between the AgileProfile and
AgilePractice concepts. This relationship, called AdoptedPractice, also maintains
information about in what extent a given practice contributed to the overall success of a
project (SuccessAssesment attribute).

 The next step was the formalization of the conceptual model in OWL, in terms
of classes, individuals, and properties (Fig. 3), using Protegé1. When implementing the
APrM model in OWL, two possible design decisions were considered on how to define

1 https://protege.stanford.edu/

the agile practices. The first option was to create an instance of AgilePractice class for
each existent practice. The alternative option was to create a subclass by each existent
agile practice extending the AgilePractice concept, and then generate a singleton
instance for each subclass. We selected the second option because it allows us to define
richer rules in the ontology and work with a reasoner to get meaningful results from the
inferences. Over 70 agile practices were collected and consolidated from various
sources (literature, websites, and agile community forums), and defined in AgiPrOnt
[Agile Alliance [S.d.]; Campanelli et al. 2018; Digital.ai 2021]. As there is no consensus
in the literature on the names of agile practices, some relationships of “aliases” were
established by means of inference rules. In addition, annotation properties were added to
the practices (definition, benefits, and pitfalls).

 Like practices, profiles’ characteristics were also defined as classes. The
complete set of practices and characteristics that were regarded in this proposal are
available in the Datasets folder in [Roldan et al. 2022]. To represent that an agile profile
has certain characteristics, the AgileCharacteristic instances are related to an instance of
AgileProfile through the hasCharacteristic object property (either
hasTeamCharacteristic, hasProjectCharacteristic,
hasExternalEnvironmentCharacteristic, or hasInternalEnvironmentCharacteristic
object properties). Characteristics have values (hasValue object property), which are
used to assign a specific meaning to the characteristic for a profile. The values can be of
different types (Fig. 3): categorical values (binary, nominal, or ordinal) and numerical
values. While nominal values represent discrete units and are used to label variables that
have no quantitative value and no order, ordinal values represent discrete and ordered
units. On the other hand, numerical values can be continuous, interval, or discrete.

The AdoptedPractice relation (Fig. 2) was reified in an OWL class called
AdoptsPracticeRelationship, in such a way that it is possible to assign it a property
value to maintain the assessment value given by a profile to the practice based on the
success of the project. The assessment value is represented on a Likert scale value.

Figure 3. Partial view of the ontology model formalized in OWL

The OWL ontology was enhanced regarding completeness, expressiveness, and logic by
adding SWRL (Semantic Web Rules Language) rules. The first set of rules was
specified to infer associations between instances, and other ones to express alias
relationships (alsoKnownAs object property) between practices (Fig. 3).

The next step was to populate the ontology. First, an owl:allDifferents axiom
was added to the ontology to explicitly state that all individuals are different. The
sources of knowledge to populate the ontology were diverse. Mainly, several case
studies and data were gathered during a previous research project in which one of the
authors participate. In that project a framework and a tool were developed to support
management and evaluation of ASD projects, with the aim of facilitating the adoption of
quality assurance practices [Pinto et al. 2018]. In this project, 47 case studies of
participating agile organizations were collected.

A structured web questionnaire helped to systematize the task of characterizing
the agile profiles for the different case studies collected. The questionnaire is made up
of a set of closed questions, which provide the possible response values for each
characteristic of a profile. Additionally, the questionnaire inquiries about the practices
that a profile has adopted or implemented during an ASD process and asks the
respondent to rate or evaluate the contribution of each practice to the success of the
project. One participant from each project answered the questionnaire. In other cases,
the questionnaire was answered by a consultant that had been involved with the
organization during the project.

The first set of questions aims to characterize the team, the attributes of the
developed project (system/software), and the characteristics of the context (internal and
external environment) in which the team and project are immersed. The possible
answers are categorical, and their values can be, according to the characteristic
considered, ordinal, nominal, or binary types. The ordinal and nominal values take
integer values between 1 and 5, where each number has an associated meaning. For
example, the team characteristic “Crossfunctional Team” takes the nominal values
“siloed teams” (1), “most members are specialists” (2), “50/50” (3), “most members
have multiple skills” (4) and “full crossfunctional” (5). Each possible value is mapped to
instances of CrossfunctionalTeamNominalValue (a subclass of NominalValue) in the
ontology. The project characteristic “Project budget ” takes ordinal values, such as “<
$1 million”, “ $ 1-2 millions”, “ $ 2-3 millions”, “ $ 3-4 millions”, and “ $ 5 millions
 Ordinal”. “Management support” is an internal context characteristic, that takes the
binary values “No” or “ Yes” . The Datasets folder in [Roldan et al. 2022] includes the
complete definition of the values of the characteristics. Most of the characteristics and
their values were taken from [Campanelli et al. 2018], then adapted and categorized to
design the questionnaire. The data gathered with the questionnaire were used to create
instances (individuals) of the AgileProfile class, and the instances of the correspondent
TeamCharacteristic, ProjectCharacteristic, and ContextCharacteristic subclasses.

 The second set of questions inquiries about what practices the agile team
adopted and employed during the development of the project. For each selected
practice, the participant is asked: “Did the practice contribute to the overall success of
the project?”. The answer provided must be a Likert scale value, which is associated
with a numerical score: Strongly Disagree (1), Disagree (2), Neutral (3), Agree (4), and
Strongly Agree (5). These values provide a rating or assessment based on the

respondent's perception of the contribution of the practice to the overall success of the
project. The data collected with the questionnaire are available in the Datasets folder in
[Roldan et al. 2022] (Profiles.xls and AdoptedPractices.xls files). They were used to
populate the ontology by employing the Profile Loader component (developed in Java
and the Apache Jena API).

4.2. The recommending algorithm
The proposed recommendation algorithm has two phases: 1) to find the right set of
candidate practices for an agile objective profile, 2) to detect conflicts, discard practices
and obtain the final recommendation. To find the set of candidate practices to
recommend, the algorithm follows the following steps:

Step 0: creation of the target agile profile. To instantiate the target profile the User
stakeholder answers the first set of questions in the questionnaire. An instance of the
class TargetAgileProfile is generated (APT) and the instances for their characteristics,
which are related through an object property to their assigned values.. This profile has
particular values for the Team / Project / Context characteristics {TC1T, TC2T, …, TCtT,
PC1T, PC2T, …, PCpT,…, CC1T, CC2T, …, CCcT}. The user also is asked about the
minimum rating value (MRV) the algorithm should employ to consider as successful the
adoption of a certain practice by a profile.

Step 1. Find the k agile profiles APi most similar to the target profile APT, calculating
the similarity according to the values of their characteristics. The result of this step is a
set of the k agile profiles {AP1, AP2, ..., APk} most similar to APT. Given that the values
of the characteristics are categorical (nominal, ordinal and binary values), the similarity
algorithm uses a distance function for categorical/binary data
(SimpleMatchingSimilarity).

Step 2. For each APi in {AP1, AP2, ..., APk}, retrieve the practices (Pj) each profile
adopted during the development of a project and the corresponding assessment about its
degree of success. These data are represented by a matrix of ratings, where the rows (i
index) are the similar agile profiles, and columns are the practices (j index). In other
words, each row in the matrix is the tuple of ratings (ri,1, ri,2, …, ri,j, …, ri,m). A rating ri,j
is a value on the Likert scale between 1 and 5 given by a profile i to a practice j. If an
agile practice Pj has not been adopted by the APi profile, a rating ri,j with a value of 0 is
considered.

Step 3. The ri,j values (ratings) are converted from nominal (Likert scale value or
zero) to binary (True/False). That is made using a mapping function, which, in case the
value of a ri,j rating is between the selected MRV and 5 (the highest Likert scale value),
it becomes true, otherwise false. The result is a new “dataset” that for each profile
(rows) and each practice (columns) has “true” or “false”, being false if the practice was
not adopted or the success rating was low, or true in case it was adopted with a neutral
or positive degree of success for the project.

Step 4. Calculate the frequently co-occurring successful practices used by the similar
agile profiles, using the FP-Growth algorithm. FP-Growth algorithm (derived from A-
Priori) is an efficient algorithm for calculating frequently co-occurring items in a
transaction database. FP-Growth algorithm is commonly applied in domains such as
market basket analysis, but also has been applied to software engineering problems

[Muhairat et al. 2020]. To apply FP-Growth algorithm in the ASD domain, we consider
the following:

- an item = an agile practice
- a transaction = a complete set of agile practices successfully adopted by an

organization/team in the development of a project, in a certain context.
- an itemset = any subset of practices that were applied together by the same agile

profile. For example, two possible itemsets could be (daily meeting, continuous
delivery, face-to-face communication, poker planning) and (daily meeting,
continuous delivery, poker planning).

The input of the FP-Growth algorithm is the result obtained in step 3, which is in the
format “items in dummy coded columns”. After applying it, the frequently occurring
practices are provided. The itemset of practices with the maximum length and an
acceptable support value contains the candidate practices CPkT for the target agile
profile {CP1T,…, CPiT,…, CPmT}. The steps 1 to 4 of the algorithm were implemented
in RapidMiner2 using a plain dataset and not directly the instances in AgiPrOnt, for
better performance [Roldan et al. 2022].

 The set of candidate practices needs to be validated to avoid recommending
practices that conflict with each other or with the target profile. The conflict resolution
phase is addressed with the usage of OWL DL and SWRL rules. The technique for
conflict detection employed is based on introducing inconsistency in the ontology and
the use of disjoint classes [Alcaraz Calero et al. 2010]. Since the models are described
in OWL DL which is based on Description Logic, a DL reasoner is used to deal with
inconsistencies, that is, two conflicting facts are held in the knowledge base. When an
inconsistency is detected by the DL reasoner, it fires a conflict detection alert.

To detect a possible conflict, we add to the ontology a class called
ConflictiveAgileProfile, an “artificial” concept for the domain. The
ConflictiveAgileProfile class is defined as disjoint with the TargetAgileProfile class. An
OWL disjoint axiom (disjointWith) is defined between the two classes, which
determines that these classes cannot have instances in common. Therefore, if a disjoint
statement is specified for two different classes, a reasoner can deduce an inconsistency
when an individual is stated to be an instance of both classes. For the conflict detection
mechanism to work, the Expert user has to define a set of SWRL rules (Fig. 4), which
express potential conflicts between practices, or between practices and profiles that have
certain characteristics.

Figure 4. SRWL rules to conflict detection

2 https://rapidminer.com/

A rule-based reasoner is used to perform inferences on the ontology by applying the
SWRL rules. Each conflict rule defined for detecting a conflict between the target
profile APT and a candidate practice CPj has an antecedent that is the conjunction of
facts that cause a conflict, and a consequent that is the inferred fact
ConflictiveAgileProfile(APT). For each candidate practice CPjT the following steps are
performed:

i. An axiom is added to the ontology that sets an AdoptsPracticeRelation
“relationship” between the target profile APT and the singleton instance corresponding
to the practice CPj. In this way, it is “temporarily” stated in the ontology that the APT

(target agile profile) adopts the practice CPj.
ii. The reasoner is synchronized, which implies that the rules for detecting conflicts

are applied. If the antecedent of a conflict detection rule is true, the TargetAgileProfile
instance (APT) is classified as ConflictiveAgileProfile. However, since previously the
APT had been created as an instance of TargetAgileProfile, an inconsistency is reported
since the APT instance cannot be instance of two disjoint classes. This means that the
adoption of the CPj by the target profile APT incurs in a practice-profile conflict, or
practice-practice conflict, so the candidate practice CPj should be dismissed.

iv. The user is informed about the existent conflict, and the practice is eliminated
from the recommendation set. When the conflict is between two practices, the user can
choose the practice to discard. Then, the axioms added in step i are deleted.

Some examples of SWRL rules for conflict detection are below. Due to lack of
space, the SRWL rules are detailed in the OWL ontology in [Roldan et al. 2022].
Rule example 1: An agile team that wants to apply the practice “Frequent face-to-face
communication” needs all its members to work in the same physical location (city or
office), or at most, in the same country (which means that traveling for meetings is
feasible). To express that in a rule, the characteristic TeamDistribution of the target
profile should not have the values greater than 2, being “Same location” or “Same
country” categorical/nominal values with values 1 and 2.
Rule example 2: To successfully employ the practice “User Stories”, the target profile
should have the external context characteristic “Product Owner/Client Availability”
with value “Medium-to-High” or “High” (the categorical/nominal values that
correspond to 4 and 5). This means that the client (Product Owner) is involved in the
project to write the user stories. Besides, there must be support from the management
(from the client’s organization) to allow employees to participate and commit to the
project. In case that is not true, a conflict is detected.

Rule example 3: When team members have little experience working together on agile
projects (the value of the TeamPreviousCooperation characteristic is “Never”), the
Kanban/Scrum board should not be digital.
An optional phase of the algorithm is to recommend additional candidate practices
based on the specific characteristics of the target profile. To this end, a series of
SPARQL queries is defined. These queries materialize the experts’ knowledge about the
ASD domain. When a performed SPARQL query for a practice returns a result, this
means that the target profile satisfies certain characteristics required by the practice.
Due to lack of space, just one example is shown, omitting the PREFIX definition. More
SPARQL queries to improve recommendations can be found in [Roldan et al. 2022].

SPARQL Query 1: If the team of the target profile has more than 10 members (time
size characteristic has value “10+(too large)”), the “ScrumOfScrums” practice is added
to the set of candidate practices. The goal is to divide the team into smaller groups.
SELECT ?profile ?value WHERE {?profile rdf:type ag:TargetAgileProfile ;
 ag:hasTeam ?team .
 ?team ag:hasTeamCharacteristic ?teamch .
 ?teamch rdf:type ag:TeamSize ;
 ag:hasValue ?value .
Filter (?value=<http://www.semanticweb.org/utn/AgileOntology#10+(toolarge)>)}

SPARQL Query 2: If the team characteristic “Turnover” of the target profile has a
value between 3 and 5 (medium, medium-to-high, or high-rate), it is advisable to do
short sprints to allow team members to get to know each other quickly. Therefore, the
practice "PersonalMaps" is added to the set of candidate practices. This practice can
also be recommended when the members of the team of the target profile have little
previous cooperation or poor domain/technology knowledge. Therefore, the SPARQL
query is defined as a UNION that comprises all the situations.

6. Evaluation
We have started some activities regarding the Demonstration and Evaluation steps of
the research method. The first activity was mainly focused on validating the quality of
the AgiPrOnt ontology. We used an automated ontology evaluation tool named OOPS!
(OntOlogy Pitfall Scanner) to verify the quality of the ontology, which helps to detect
some of the most common pitfalls when developing ontologies. We evaluated the
AgiPrOnt ontology (at Tbox level) by submitting it to OOPS!. Some pitfalls were
detected by OOPS!, which were considered to improve the ontology. On the other hand,
to validate the satisfaction of the ontology requirements, we verified the coverage of the
competency questions that were identified in Section 2. To prove that the requirements
were satisfied, a set of SPARQL queries were performed to answer the competency
questions. Due to lack of space, the queries are provided in [Roldan et al. 2022]. In
addition, AgiPrOnt has been informally reviewed by human experts during its
development. The reviewers were some of the organizations, which have participated in
previous research studies carried out by the authors and answered the questionnaire.
Several validation activities were carried out during working technical meetings and
workshops. The resulting comments led to a continuous ontology improvement in order
to be functionally integrated into the recommender system.

Regarding the evaluation of the recommendation algorithm, we generated 12 test
cases for different scenarios, each one representing an agile profile with a particular
configuration of Team/Project/Context characteristics, with clear differences between
the cases. Six of them were obtained from collaborating organizations that provided
actual situations prior to the start of an ASD project. The recommender provided a
different set of practices for each case. However, we note that in 3 cases, the set of
practices recommended was insufficient and very basic, as the ontology lack of enough
data to give a better result. Despite this limitation, the performed tests were useful for
adjusting the parameters of FP-growth, such us support, frequency, minimum support
and frequency, minimum and maximum items per itemset, in order to obtain the best
result.

The validation of the proposed recommender has other limitations. Although

several tests and recommendations were conducted, it is not possible to obtain feedback
in the short term on user satisfaction regarding the usefulness of the recommendations.
Until the projects in which the recommended practices were adopted have not been
completed, the degree of success achieved cannot be known. Finally, the knowledge
represented in AgiPrOnt is still limited; with only 47 case studies, there are situations
that the model cannot answer. To address this limitation, we plan to add more
knowledge to the ontology in the future.

6. Conclusion
This research proposes an ontology-based recommender system of agile practices. The
ontology enables the representation of agile software development knowledge so that
the experiences on agile adoption can be reusable and systematic. The original approach
of the Agile Practice Recommender resides in the combination of an ontology, data
mining techniques, and semantic rules to detect conflicts in the recommended practices.
The representation of expert knowledge using SWRL rules and SPARQL queries is
useful to compensate for the deficiencies of datamining techniques applied to a small
number of cases. For future work, we are working on integrating the recommender with
agile development frameworks like Jira and SonarQube. Such integration would make it
possible to recommend the practices at the beginning of a new project and record the
ones adopted, some of which can be supported by the framework in use. In addition, the
recommender could be fed with the metrics generated by these frameworks, which can
help to automatically characterize the agile profiles (regarding team, project, and
environment), record experiences, and add new cases to the recommender.

References
Agile Alliance ([S.d.]). Agile Glossary and Terminology.
https://www.agilealliance.org/agile101/agile-glossary/, [accessed on Apr 1].
Alcaraz Calero, J. M., Marín Pérez, J. M., Bernal Bernabé, J., et al. (1 nov 2010).
Detection of semantic conflicts in ontology and rule-based information systems. Data
and Knowledge Engineering, v. 69, n. 11, p. 1117–1137.

Borges Ruy, F., Falbo, R. de A., Barcellos, M. P., Costa, S. D. and Guizzardi, G.
(2016). SEON: A software engineering ontology network. In Lecture Notes in
Computer Science (LNAI volume 10024). Springer Verlag.

Burke, R. (2000). Knowledge-Based Recommender Systems. ENCYCLOPEDIA OF
LIBRARY AND INFORMATION SYSTEMS, v. 69, p. 2000.
Campanelli, A. S., Camilo, R. D. and Parreiras, F. S. (1 mar 2018). The impact of
tailoring criteria on agile practices adoption: A survey with novice agile practitioners in
Brazil. Journal of Systems and Software, v. 137, p. 366–379.

Digital.ai (2021). 15th Annual State Of Agile Report. https://digital.ai/resource-
center/analyst-reports/state-of-agile-report, [accessed on Mar 29].

Guizzardi, G. (2005). Ontological foundations for structural conceptual models.
Telematica Instituut / CTIT.
Isinkaye, F. O., Folajimi, Y. O. and Ojokoh, B. A. (2015). Recommendation systems:
Principles, methods and evaluation. Egyptian Informatics Journal. Elsevier.

Júnior, P. S. S., Barcellos, M. P., Falbo, R. de A. and Almeida, J. P. A. (17 mar 2021).
From a Scrum Reference Ontology to the Integration of Applications for Data-Driven
Software Development. Information and Software Technology, p. 106570.
Kiv, S., Heng, S., Kolp, M. and Wautelet, Y. (21 may 2019). Agile methods knowledge
representation for systematic practices adoption. In Lecture Notes in Business
Information Processing. . Springer Verlag.

Kurapati, N., Manyam, V. S. C. and Petersen, K. (2012). Agile software development
practice adoption survey. In Lecture Notes in Business Information Processing. .
Springer Verlag.

Letelier, P. and Penades, M. C. (2017). AgileRoadmap: An Approach to Implement
Agile Practices in Teams. IEEE Latin America Transactions, v. 15, n. 7, p. 1295–1300.
Meyer, B. (2014). Agile! Springer International Publishing.

Minoli, M. (2011). Marco de Soluciones basado en Ontologías para Desarrollo Global
Ágil. Universidad Rey Juan Carlos.

Muhairat, M., ALZu’bi, S., Hawashin, B., Elbes, M. and Al-Ayyoub, M. (jan 2020). An
Intelligent Recommender System Based on Association Rule Analysis for Requirement
Engineering. Journal of Universal Computer Science, v. 26, n. 1, p. 33–49.

Nishijima, R. T. and Dos Santos, P. D. J. G. (27 jul 2013). The challenge of
implementing Scrum agile methodoloy in a traditional development environment.
International Journal of Computers & Technology, v. 5, n. 2, p. 98–108.

Oliveira Bringuente, A., Almeida Falbo, R. and Guizzardi, G. (2011). Using a
foundational ontology for reengineering a software process ontology. Journal of
Information and Data Management, v. 2, n. 3, p. 511–511.
Ortega-Ordoñez, W. A., Pardo-Calvache, C. J. and Pino-Correa, F. J. (1 apr 2019).
Ontoagile: An ontology for agile software development processes. DYNA (Colombia),
v. 86, n. 209, p. 79–90.

Perkusich, M., De Almeida, H. O. and Perkusich, A. (2013). A model to detect
problems on scrum-based software development projects. In Proceedings of the ACM
Symposium on Applied Computing. . ACM Press.

Pinto, N., Tortosa, N., Cabas Geat, B., Ibanez, L. and Bollati, V. (26 dec 2018). Quality
evaluation of agile processes: Measurement of requirements management using AQF
v2. In Proceedings - 2018 QUATIC 2018. IEEE.

PMIBA, C. Á. (2020). 2° Estudio sobre el Pulso de la Agilidad en Argentina 2020.

Roldan, M. L., Bollati, V. and Gonnet, S. (2022). Agile practices adoption by Argentine
software organizations. Mendeley Data, V3, doi: 10.17632/3chkfjxxk5.3

Stray, V., Memon, B. and Paruch, L. (2020). A Systematic Literature Review on Agile
Coaching and the Role of the Agile Coach. LNCS (subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), v. 12562 LNCS, p. 3–19.
Tarus, J. K., Niu, Z. and Mustafa, G. (1 jun 2018). Knowledge-based recommendation:
a review of ontology-based recommender systems for e-learning. Artificial Intelligence
Review, v. 50, n. 1, p. 21–48.

