
Understanding Refactoring Tasks over Time:
A Study Using Refactoring Graphs

Aline Brito, Andre Hora, Marco Tulio Valente

1 ASERG Group, Department of Computer Science (DCC),
Federal University of Minas Gerais (UFMG) – Belo Horizonte, Brazil

{alinebrito,mtov,andrehora}@dcc.ufmg.br

Abstract. Refactoring is a fundamental practice in modern software develop-
ment. Therefore, it is essential that practitioners have a solid understanding of
refactoring, both in theory and in practice. In this paper, we rely on a graph-
based abstraction—called refactoring graphs—to visualize and analyze refac-
torings performed by students in a canonical refactoring application: the Video
Store System, proposed by Fowler. We asked 46 students to perform the refactor-
ings included in this example under two scenarios: according to a list of explicit
guidelines, where most students performed the tasks successfully; and by using
flexible ones, in which a part of the students faced problems identifying the ap-
propriate operations. We conclude by presenting discussions and implications.

1. Introduction
Refactoring is a common and indispensable practice during software evolution. De-
velopers frequently refactor the source code for different proposes [Murphy-Hill et al.
2009, Pantiuchina et al. 2020, Silva et al. 2016]. As a consequence, a large number of
studies investigate refactoring practices in the last 30 years [Abid et al. 2020]. Many
of those studies focus on refactoring comprehension, for example, assessing motivations,
benefits, impact, and challenges of refactoring operations [Pantiuchina et al. 2020, Kim
et al. 2014,Sellitto et al. 2022]. There are also approaches and tools to understand source
code affected by refactoring [Silva et al. 2020, Tsantalis et al. 2020, Brito and Valente
2021, Grund et al. 2021]. However, typically, prior literature does not rely on abstrac-
tions to extract, visualize, and understand complex refactoring tasks performed over time,
which is a relevant aspect for researchers and practitioners [Bogart et al. 2020, AlOmar
et al. 2021a].

Therefore, in this paper, we explore an abstraction called refactoring graphs [Brito
et al. 2020, Brito et al. 2021] to visualize, interpret, and evaluate refactoring tasks per-
formed over time. For this purpose, we rely on a canonical refactoring example: a Video
Store System, proposed by Fowler [Fowler 1999]. This example is used by Fowler to
present and discuss refactoring operations, practices, and benefits. Specifically, we invited
46 students from a Software Engineering undergraduate course to perform refactoring op-
erations in the Video Store System under two distinct scenarios. The first one includes a
list of explicit and well-defined guidelines, i.e., refactoring tasks with detail instructions
about the piece of code that should be refactored and the expected operations. The sec-
ond scenario comprises flexible and open guidelines, in which we asked the students to
implement the Template Method design pattern [Gamma et al. 1995].

After that, we detect the refactorings performed by the students in distinct commits
(i.e., over time) [Silva et al. 2020]. Next, we generated refactoring graphs to describe
the refactorings performed by each student. In such graphs, the nodes are methods, and
the edges represent refactoring operations. Particularly, our guidelines generate a large
refactoring graph with 24 vertices and 26 edges.

To better understand the tasks performed by the students, we first rely on a graph-
based metric. Specifically, for explicit guidelines, we used a similarity metric called edit
distance to compare each student’s graph with our ground truth [Sanfeliu and Fu 1983].
This strategy allowed us to automate the analysis of the tasks performed by the students
and to rapidly conclude whether they matched our proposed ground truth. It also allowed
us to rapidly identify and analyze the divergences between the student’s solution and
the ground truth. In the case of flexible guidelines, we performed a visual inspection
by navigating in the graph-based structure to verify, for example, refactoring operations,
sequence of operations, and affected elements. Our key results are summarized as follows:

1. When following explicit guidelines, most students performed refactoring tasks
successfully (93.5%). The few mistakes refer to refactorings performed in multi-
ples commits.

2. When following flexible guidelines, less students implemented the design pattern
successfully (70%). Particularly, a significant part of the students faced difficulties
identifying the appropriate refactorings operations.

Our contributions are twofold. First, we show that refactoring graphs can be
used to understand, evaluate, and visualize large refactoring tasks. In some cases, this
analysis can be automated using standard graph metrics, such as edit distance. Second,
we complement research on refactoring practices, mainly on the educational side, by
exploring the student’s understanding of refactoring.

Structure: Section 2 includes details about the Video Store System and the representation
of refactoring operations as graphs. Section 3 describes the study design, while Section 4
shows the results. Section 5 states threats to validity, and Section 6 presents related work.
We conclude by prospecting future studies in Section 8.

2. Background

2.1. Video Store System

In the study described in this paper, the students followed the steps proposed by Fowler
to refactor a well-known example designed to illustrate the benefits and the mechanisms
of refactoring: a system to calculate and print clients’ charges at a Video Store [Fowler
1999].1 Basically, the system prints the movies rented by a client with prices and the
number of rented days. The price depends on the movie’s category (i.e., regular, children,
and new releases) and the number of rented days. The initial system version contains
three classes:

• Movie: class that represents a movie with the respective data, i.e., title, price, and
category.

1In the 2nd edition of his book, Fowler changed the system to JavaScript. However, we decided to use
the original system since it is still widely known.

• Rental: class that represents a client renting a movie. It includes information about
the movie and the number of rented days.

• Customer: class to represent the store’ clients. It comprises information as
the client’s name and a list of rented movies. There is also a method, named
statement(), which prints the statement in text format.

The new code design is a consequence of several refactoring operations to improve
existing code and incorporate a new feature. Among these refactorings, most cases aim
to decompose the large method statement() by extracting and moving distinct pieces of
the code. Other refactorings generate the class Price and their subclasses in seven main
steps, as proposed by the State design pattern. In this case, the goal is to remove a condi-
tional statement that determines the price of each video category. There are also classes
to print the statement in different formats (i.e., HTMLStatement and TextStatement), as
proposed by the Template Method pattern.2

2.2. Refactoring Graphs

We use refactoring graphs to visualize and understand the operations performed by the
students in our experiment [Brito et al. 2020, Brito et al. 2021]. Formally, a refactor-
ing graph G contains a set of disconnected subgraphs G′ = (V ′, E ′). In these graphs,
the vertices represent the full signature of methods. The edges refer to the refactor-
ing type (e.g., extract method), and it includes additional information about the oper-
ation (e.g., author name, date, and commit). Figure 1 shows an example: extracting
method amountFor(Rental) from statement(), and moving it with a new name to a
class Rental creates a sequence with two edges in the subgraph. A second refactoring to
extract and move the method getFrequentRenterPoints() from statement() gener-
ates another node in the graph.

EXTRACTclass Customer
String statement()

class Customer
String amountFor(Rental r)

class Rental
String getCharge()

class Rental
int getFrequentRenterPoints()

EXTRACT
AND MOVE

MOVE AND
RENAME

Figure 1. Example of a fragment of ref. subgraph from Video Store System

In this context, following all the steps to refactor the Video Store System creates a
large subgraph with 24 vertices and 26 edges, as presented in Figure 2. As we can notice,
14 edges refer to extract operations, generating one or more methods, i.e., new vertices
in the subgraph. The subgraph also includes two pull up methods, six pull up signatures
(when only the signature is pulled up, preserving the method body in the subclass), and
three push down implementations (when the signature is kept in the superclass, as an
abstract method). There is a single operation called move and rename method, which
moves a method to a distinct class, changing its name.

2The class diagram of the system before and after applying the refactoring tasks is publicly available at:
github.com/alinebrito/refgraph-fowler-study#class-diagram

github.com/alinebrito/refgraph-fowler-study#class-diagram

EXTRACT
AND MOVE

EXTRACT
AND MOVE

MOVE AND
RENAME

EXTRACT
AND MOVE

EXTRACT
AND MOVEEXTRACT

EXTRACT

AND MOVE

EXTRACT
AND MOVE

EXTRACT

EXTRACT

EXTRACT

PULL UP

PULL UP

EXTRACT

EXTRACT

EXTRACT

PULL UP
SIGNATURE

PULL UP
SIGNATURE

PULL UPSIGNATURE

PULL UP

SIGNATURE

PULL UP

SIGNATURE

PULL
 U

P

SIG
NATURE

PUSH DOWN

IMPLEMENTATION

PUSH DOWN
IMPLEMENTATION

PUSH DOWNIMPLEMENTATION

EXTRACT

AND MOVE

Figure 2. Refactoring subgraph from Video Store System (ground-truth)

3. Study Design

3.1. Study Participants

We perform our study with 46 undergraduate students in Computer Science (10 women
and 36 men), which we label from S01 to S46. Specifically, they are students concluding a
Software Engineering course. In this course, they have studied topics such as refactoring,
testing, design patterns, and clean code. The students could decline participation in the
study. Also, we inform the participants that the results could be reported exclusively in
an anonymous format. The period to perform the proposed refactoring exercise was one
week. The results do not include three students who completed the set of tasks in less
than ten minutes.

3.2. Refactoring Tasks & Research Questions

Each student received the three initial classes—Movie, Rental, and Customer—and the
instructions to perform the refactorings. We separate the study into two main parts: ex-
plicit and flexible guidelines.

The first part refers to explicit guidelines, in which the students received explicit
information about the expected refactoring tasks. Specifically, these guidelines indicate
the piece of code that should be refactored, the refactoring type, and the signature of the
new methods. There are 15 main steps. Three of them introduce new methods or classes,
and the other cases involve refactoring operations to make the source code cleaner or to
apply changes in the inheritance hierarchy. There is also large refactoring to replace a
conditional to polymorphism, which results in a new Price hierarchy. Each step finishes
with a commit indicating the conclusion of a refactoring task.

After finishing the first part, there are two similar methods in class Customer,
statement() and htmlStatement(), which print the statement in ASCII and HTML
formats, respectively. Therefore, in the second part of the study, we described to the
students the problems of this design structure. For example, it is necessary to duplicate

the code to print the statement in other formats, such as CSV, JSON, etc. To mitigate this
issue, Fowler proposes the usage of a Template Method. To implement this pattern, it is
necessary to extract and move a set of similar methods to new classes. Then, multiple
extract operations are needed to make the methods identical. As a final operation, a set of
pull up operations should be performed to generate the template code.

Therefore, the second part includes a set of flexible guidelines. We invite the
students to implement the Template Method pattern to eliminate duplicated code as we
previously described. Different from the explicit guidelines, we do not indicate operations
or details about the piece of code that should be refactored. Each student received only
high-level instructions to refactor the methods, in order to create a template method.

We report each guideline results in distinct research questions, which are described
in Section 4. Specifically, we present the findings from explicit guidelines in RQ1, and
the results from flexible guidelines in RQ2. We use refactoring graphs as an abstraction
to understanding and visualizing the sequence of refactoring operations performed by the
students. In RQ1, we rely on a graph similarity metric to detect results that diverge from
our ground truth [Sanfeliu and Fu 1983]. In RQ2, we perform a manual inspection of the
refactoring subgraphs created from the refactorings performed by the students.

3.3. Detecting Refactoring Operations

We used REFDIFF to identify the refactorings performed by the students [Silva et al.
2020]. As mentioned in a previous section, our study concentrates on six distinct refactor-
ing operations over methods (i.e., extract, extract and move, move and rename, push down
implementation, pull up, and pull up signature). REFDIFF is a tool that detects refactorings
by analyzing the commits of git-based projects. Therefore, for the 46 projects (i.e., one
project per participant), we iterate in the list of commits, comparing each commit with its
parent one.

3.4. Execution time

We also computed the time to generate the refactoring graphs. To this purpose, we used
a Core i7-8550U workstation with 16 GB of RAM, 5,400 RPM HDD, and Ubuntu 18.04.
The process to build our ground truth executed in 18 seconds. As we can observe in Figure
3, regarding the students’ projects, the execution times are also low, ranging from 20 to
31 seconds, with a median of 23 seconds. These runtime measures consider the whole
process, which includes getting the list of commits, detection of refactoring operations by
RefDiff, and generation of refactoring subgraphs. In total, we were able to generate all
refactoring subgraphs (of all students) in approximately 18 minutes.

23

20 22 25 31
Execution Time (seconds)

Figure 3. Distribution of the time to generate refactoring graphs per student

4. Results

In this section, we discuss our results. We divide the discussion in two parts: refactorings
performed using explicit guidelines and refactorings performed using flexible guidelines.
We rely on refactoring graphs to interpret the refactoring tasks performed by the students.

4.1. (RQ1) How do Students Apply Refactorings When Following Explicit
Guidelines?

The instructions from the explicit guidelines generate ten edges in the expected refactoring
subgraph (top of Figure 2). We compare this subgraph with our ground truth, reporting
the number of extra and missing edges. We also assess the similarity by computing the
subgraph edit distance. This distance is defined as the minimum number of addition,
deletion, and replacement of vertices or edges that makes the student’s subgraph identical
to the ground-truth graph. As shown in Table 1, only three students made mistakes (6.5%).
The other 43 students (93.5%) completed the tasks successfully, i.e., the distance to the
ground truth is zero.

Table 1. Subgraphs with mistakes in the explicit guidelines

Student Edges DistanceTotal Extra Absent

S02 7 - 3 6
S22 9 - 1 1
S44 12 2 - 2

These three students only made minor errors. For example, in the sixth refactor-
ing task, the students should extract and move the method Rental.getFrequentRenter-
Points() from Customer.statement(). However, S22 performed this refactoring in
two steps. In the first commit, the student copied the code from statement() to get-
FrequentRenterPoints(). In other words, the student created a duplicated code. How-
ever, in a second commit, the student removed the duplication, replacing the code with a
call to the new method.

There is a similar mistake in S02’s subgraph. In the thirteenth refactoring task, the
students received instructions to change method Price.getCharge() by pushing down
the implementation to three subclasses. But, S02 also performed this refactoring in two
steps, creating a duplicated code. In the first commit, the student copied the code to the
subclasses. In a subsequent commit, the student updated the superclass, keeping only the
method signature. Since the student did not perform the three push down implementations
in a single commit, our refactoring mining tool had not detected the refactorings. As a
result, the distance between the refactoring graphs is six. In other words, it is necessary
to add three edges and three vertices to make the subgraph identical to the ground truth,
as shown in Figure 4.

Finally, S44 reverted a refactoring task, which generates two extra edges in the
subgraph. In this case, the reason is that the student created the new method with only a
piece of the expected code. Therefore, S44 reverted the operation and after that performed
it correctly.

EXTRACT
AND MOVE

EXTRACT
AND MOVE

MOVE AND
RENAME

EXTRACT
AND MOVE

EXTRACT
AND MOVEEXTRACT

PUSH DOWN

IMPLEMENTATION

PUSH DOWN
IMPLEMENTATION

PUSH DOWNIMPLEMENTATION

EXTRACT

AND MOVE

(flexible guidelines)

Figure 4. Example of a student’s refactoring subgraph. Dashed lines represent
missing edges and vertices (explicit guidelines, S02).

Summary: When following explicit guidelines on refactoring operations, 93.5% of the
students perform the refactoring tasks successfully. The few mistakes refer to refactor-
ings performed in multiple commits. To evaluate the tasks, we used a similarity metric
to compare each student’s subgraph with the ground truth. We were able to obtain each
assessment in a few milliseconds.

4.2. (RQ2) How do Students Apply Refactorings When Following Flexible
Guidelines?

The flexible guidelines can be finished with three refactoring tasks. These tasks refer
to the implementation of the Template Method pattern, which generates 16 edges in the
ground truth refactoring subgraph (bottom of Figure 2). For this study part, we performed
a qualitative analysis by manually inspecting the 46 subgraphs and the source code to
investigate the students’ strategies. In the following paragraphs, we describe the results.
Overall, 32 students (70%) performed the flexible guidelines successfully.

Task 1. In the first task, the students received instructions to create the super-
class Statement, as well as the respective subclasses (i.e., TextStatement and
HtmlStatement). Next, they were instructed to extract and move method statement()
to subclass TextStatement, which must contain the code to print the statement in ASCII
format. Similarly, it is necessary to extract and move method htmlStatement() to sub-
class HtmlStatement, which contains the code to print the statement in HTML format.
The two moved methods should have the name value(). Most students performed these
steps correctly, generating two edges in the subgraph (44 students, 96%). In two cases,
minor mistakes refer to unfinished refactorings.

Task 2. In the second task, we invited the students to perform all refactoring oper-
ations in order to make the two methods identical, i.e., HtmlStatement.value() and
TextStatement.value(). For each method, we expect at least three extract operations,
as presented in Figure 5.

The first operation extracts a method to build the statement’s header, returning the
client’s name in a specific format (HTML or ASCII). The second refactoring generates
a method to retrieve the movie’s title and charge. Finally, the third extracted method re-
turns the statement’s footer, which contains information about the price and the client’s
renter points. In Figure 5, vertices A, B, and C indicate the operations to decompose
HtmlStatement.value(). Similarly, there are three extract operations to decompose
method TextStatement.value().

We detect that 33 students (72%) performed the expected operations, i.e., they

A

B

C

EXTRACT

EXTRACT
EXTRACT

public String value(Customer aCustomer) {

Enumeration rentals = aCustomer.getRentals();

String result = "<H1>Rentals for " +
aCustomer.getName() + "</H1><P>\n";

while (rentals.hasMoreElements()) {

Rental each = (Rental) rentals.nextElement();
//show figures for each rental
result += each.getMovie().getTitle()+ ": " +
String.valueOf(each.getCharge()) + "
\n";

}

//add footer lines
result += "<P>You owe " +
String.valueOf(aCustomer.getTotalCharge()) + "<P>\n";

result += "On this rental you earned " +
String.valueOf(aCustomer.getTotalFrequentRenterPoints()) +
" frequent renter points<P>";

return result;

}

A Extract method
 getStatementHeader(Customer)

B Extract method
getStatementBody(Rental)

C Extract method
getStatementFooter(Customer)

Figure 5. Refactoring operations to decompose method value() in subclass Html-
Statement (flexible guidelines, task 2)

decomposed the methods by extracting three new ones in each subclass. Interestingly,
five students (11%) used a different strategy. They divided the statement footer into two
methods. The first method returns the price and the second one returns the client’s renter
points. As a consequence, these students created eight vertices in the subgraph (i.e, four
extract operations in each subclass).

Eight students (17%) did not perform extract operations to remove the code du-
plication. Among these cases, five students (11%) added fields. For example, S22 used
fields to customize the strings, as presented in Figure 6. The values of the fields are de-
fined in the constructors. For instance, field preName receives the value “<H1>Rentals
for ” in subclass HtmlStatement. The same field receives the value “Rental
Record for” in the subclass TextStatement. Finally, S17 only added empty methods,
and two students did not make the methods identical.

4
5
6
7

public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();

String result = "Rental Record for " + aCustomer.getName()
+ "\n";

15
16
17

public String value(Customer aCustomer) {
 Enumeration rentals = aCustomer.getRentals();

String result = _preName + aCustomer.getName() + _posName;

-
-

+

Figure 6. Textual diff produced by GitHub. S22 added two fields (preName and
posName) in the header line (explicit guidelines, task 3)

Task 3. Assuming the students performed the refactoring tasks as expected, we should
have in this step two identical methods value() in TextStatement and HtmlStatement.
As a final operation, we requested the students to remove this duplicated code. It is
expected at least six pull up signatures and two pull up methods in this last task, which
generates eight edges in the subgraph. Among the 46 students, 74% completed this task
successfully (34 occurrences).

Summary: When following flexible guidelines for refactoring operations, most students
implemented the Template Method pattern successfully (70%). Most mistakes refer to
students who faced problems identifying the appropriate operations. Refactoring graphs
assisted in visualization and understanding the sequence of refactoring tasks performed
by the students.

5. Threats to Validity

5.1. Construct Validity

Refactoring tasks. First, the communication among the students is a possible threat in
our study. However, the participants received instructions to avoid sharing their source
code. To mitigate this threat, we removed outliers from our results. The period to perform
the proposed refactoring exercise was one week. For the explicit guidelines (RQ1), about
75% of the students complete the tasks up to 198 minutes (i.e., approximately three hours),
with a median of 106 minutes. In case of flexible guidelines (RQ2), 75% of the students
spent about one hour to conclude the three refactoring tasks (i.e., 65 minutes), with a
median of 44 minutes. The highest intervals probably refer to students that paused the
refactoring tasks for a while, returning on a distinct day. Considering the distribution
of the time, we eliminated the projects of three students, who performed the explicit or
flexible guidelines in less than ten minutes since this is not a viable time to conclude
the refactoring tasks. Second, the refactoring tasks include examples and discussions,
which are spread over eleven chapters of Fowler’s book. In other words, it is not trivial to
obtain the answers directly from the book. Still, the usage of Fowler’s book by students
is a possible threat. We relied on two different strategies to alleviate this threat, i.e.,
creating not only explicit but also flexible (or open) guidelines. All students followed these
guidelines, and we obtained different results. Particularly, when following the flexible
guidelines, a significant part of them faced problems performing the refactoring tasks.
Third, the Video Store System may represent a nonessential software project nowadays.
We decided to keep this system to preserve consistency with Fowler’s catalog, which is
widely used in Software Engineering courses. In future studies, we plan to use the new
book version [Fowler 2018], which relies on JavaScript and adaption of the system to
another context.

Detection of refactoring operations. We removed a single refactoring operation and two
projects due to compilation errors or false positives. These cases represent a small piece of
the sample. Thus, it is not likely to influence our results. In addition, we used REFDIFF to
detect the refactorings [Silva et al. 2020]. We adopted this tool due to its support to multi-
ple programming languages. Therefore, it is possible to replicate the study with the refac-
torings described in the last edition of Fowler’s book, which relies on JavaScript [Fowler
2018]. It is also possible to adapt the guidelines to other programming languages, such as
C [Silva et al. 2020] and Go [Brito and Valente 2020].

5.2. Internal Validity

Student’s mistakes. We used refactoring graphs as a visual instrument to understand
and evaluate the refactoring operations performed by the students. Also, we used a sim-
ilarity metric called graph edit distance to compare our ground-truth subgraph with the

students’ subgraphs. For this purpose, we rely on a well-known Python library that imple-
ments this similarity algorithm.3 However, our results also rely on the manual inspection
of the commits of each student. Thus, we reinforce their subjective nature. The refac-
toring operations performed by the students (and our analysis) are publicly available at:
alinebrito.github.io/refgraph-fowler-study

5.3. External Validity
Generalization of the results. Our guidelines relied on the Java programming language
and on a canonical refactoring example to introduce refactoring concepts, i.e., the Video
Store System proposed by Fowler [Fowler 1999]. Thus, as unusual in empirical software
studies, the results can not be generalized to other scenarios, such as different refactoring
tasks or programming languages.

Sample size and students’ experience. The 46 participants might not be a representative
sample. However, they have previously studied several topics in the Software Engineering
course (e.g., refactoring, testing, design patterns, and clean code).

6. Related Work
Refactoring is a fundamental practice in software development and evolution. For this rea-
son, several studies focused on this research line over the last 30 years [Abid et al. 2020].
Among them, there are several studies aiming to understand refactoring activities [Kim
et al. 2012, Kim et al. 2014, Mahmoudi et al. 2019, Pantiuchina et al. 2020, Paixao et al.
2020]. However, there is also a need for abstractions and tools to organize, visualize, and
evaluating large and complex refactorings [Bogart et al. 2020, AlOmar et al. 2021a].

Most studies focus on developers’ perception of refactoring. Murphy-Hill et
al. [Murphy-Hill et al. 2009] used four Eclipse IDE datasets to investigate how devel-
opers perform refactoring operations. Considering these metadata, the authors discuss
the frequency of refactoring operations, the usage of tools, and refactoring occurring in
batches (i.e., in a 60-second time window). Among the main findings, the authors point
out that 40% of refactorings occur in batches and developers alternate refactorings with
other software activities. Silva et al. [Silva et al. 2016] investigated the motivations
behind refactoring operations by performing a firehouse interview with 195 developers.
The authors report 44 distinct reasons, such as improving testability or readability and
eliminating duplicated pieces of code. The study also discusses the usage of tools for
supporting refactoring, reinforcing a previous study about the prevalence of manual refac-
torings [Murphy-Hill et al. 2009]. A recent study expands this catalog, by adding 26 new
motivations [Pantiuchina et al. 2020]. In this case, the author analyzed a set of 551 pull
requests and the respective commits. However, the mentioned studies do not explore ab-
stractions to visualize and understand refactoring tasks over time. In this paper, we rely on
refactoring graphs to extract and interpret large refactoring tasks performed by students.
In the wild, refactoring graphs have been used to explore refactorings performed over
time, showing that a significant part of the operations is not a sole transformation [Brito
et al. 2020, Brito et al. 2021].

On the educational side, research on refactoring covers distinct scenarios. De-
meyer et al. [Demeyer et al. 2005] propose examples for students. López et al. [López

3networkx.org/documentation/stable/reference/algorithms/similarity.html

alinebrito.github.io/refgraph-fowler-study

et al. 2014] propose activities to teach refactoring. The study suggests a set of tasks, such
as reading texts, comprehension of refactoring catalogs, and practical exercises. Other
studies discuss approaches and lessons to promote refactoring practices [Stoecklin et al.
2007, Hebig et al. 2020]. There are also tools to improve the student’s perception of
refactoring [Agrahari and Chimalakonda 2020]. However, the mentioned studies do not
consider graph-based concepts to evaluate refactoring activities over time.

Keuning et al. [Keuning et al. 2020] performed a study with 133 students from the
second year of a Software Engineering course. The experiment uses a tutoring system,
which contains a set of refactoring exercises and provides feedback during the refactoring
tasks. Specifically, there is an option to check the student progress, and a second func-
tionality to get hints (i.e., to diagnose and provide suggestions). The students’ mistakes
were extracted from log entries of the system. However, most of them are outside the
scope of refactoring. For example, the authors report compiler errors due to language
unsupported constructs, runtime errors, and failed tests. Besides, each of the five exer-
cises involved an isolated issue. For example, two tasks are from a website that contains
a list of code problems. In our paper, we use a canonical refactoring example (proposed
by Fowler [Fowler 1999], with 18 refactoring tasks) and leverage refactoring graphs to
assess refactoring operations performed over time.

Abid et al. [Abid et al. 2015] conducted a study with 23 students. Each group
performed a kind of project scheme in a real system. The first scheme contains a set of
software changes, ending with refactoring tasks. In contrast, the second scheme starts
with refactoring issues. The authors reported better results in the second one. However,
the study does not concentrate exactly on refactoring comprehension. The authors focus
on the main differences by performing refactoring operations before and after functional
improvements of the system. Besides, the tasks are performed by two or three students.
Thus, different students’ perceptions of refactoring can influence the results. In our study,
each result refers to a single student. In addition, our guidelines are based on a well-
known refactoring example.

Karac et al. [Karac et al. 2019] investigated the impact of task granularity on
Test-Driven Development (TDD). Overall, the study encompasses five main steps. For
example, there are steps to implement a feature and the respective tests. The last step
involves refactoring operations to improve code quality. The study involves 52 students,
most of them are novice programs. The tasks rely on programming exercises, which are
essentially algorithmic. A group of students performed decomposed tasks. In contrast,
the second group received tasks without decomposition in small steps. Among the main
results, the authors argue about the importance of breaking larger work into smaller ones,
mainly for novice practitioners. However, the study concentrates on the granularity of
issues, and the refactoring operations are just a step of the experiment.

7. Discussion

First, among the most recurring students’ mistakes, there are refactoring operations com-
pleted in two steps (i.e., two commits). Refactorings performed along multiple commits
represent a threat to current studies on refactoring practices. Particularly, the ones based
on tools such as RefactoringMiner [Silva et al. 2016, Tsantalis et al. 2018, Tsantalis et al.
2020] and RefDiff [Brito and Valente 2020, Silva and Valente 2017, Silva et al. 2020].

These tools detect refactorings by computing the “diff” between one commit and its par-
ent. For example, if we assume three sequential commits C1, C2, and C3, the tools will
miss a refactoring that starts in C1, but that is only finished in C2, as we observed when
manually analyzing the results of both RQs. Since studies on refactoring rely on the de-
fault configuration of RefactoringMiner and RefDiff [Bibiano et al. 2019, Sousa et al.
2020,Hora et al. 2018,Paixao et al. 2020,AlOmar et al. 2021b,Brito et al. 2018], they do
not consider refactorings performed over multiple commits. Therefore, we also envision
research on new heuristics and techniques to detect refactoring in multiples commits, as
well as the investigation of their impact on mining software studies.

Second, several well-known graph algorithms can be used with refactoring graphs,
such as algorithms to mine graph patterns and metrics [Xifeng Yan and Jiawei Han
2002, Leung 2010, Sanfeliu and Fu 1983]. For example, in the first research question,
we used a similarity metric called graph edit distance to compare our ground-truth sub-
graph with the students’ subgraphs. Refactoring graphs also allow easy navigation on
refactoring operations. We can inspect, for example, entity names, visualize sequences of
refactoring tasks, and identify missing and extra operations (i.e., edges and vertices). In
this context, researchers can rely on refactoring graphs to perform empirical studies on
complex and large refactoring practices over time, which is a hurdle recently pointed in
the literature [AlOmar et al. 2021a].

8. Conclusion

In this paper, we explore the usage of refactoring graphs to represent, visualize, and as-
sess large refactoring tasks over time. For this purpose, we invited 46 undergraduate stu-
dents from a Software Engineering course to refactor a well-known example proposed by
Fowler, a Video Store System [Fowler 1999]. Each student received two groups of refac-
toring tasks. The first group included explicit guidelines, i.e., the precise indication of the
piece of code to be refactored and the expected operation. In contrast, the second group
received flexible instructions. Specifically, in this second case, we invited the students to
implement a design pattern without details about the piece of code to be refactored.

The refactoring tasks create a large refactoring subgraph with 24 vertices and 26
edges. The genereration of all refactoring graphs demanded about 18 minutes, i.e, a
median of 23 seconds per student. After building such graphs, we assessed the refactoring
tasks using graph-based metrics and performing visual inspections. We summarize our
findings as follows:

• When following explicit guidelines, most students performed refactoring tasks
successfully (93.5%). The few mistakes refer to refactorings performed in multi-
ples commits.

• When following flexible guidelines, most students implemented the proposed de-
sign pattern successfully (70%). However, a significant number of students faced
problems identifying the appropriate refactoring operations.

Based on our results, we provided implications for different scenarios. Specifi-
cally, we discuss our contributions regarding graph-based abstractions to support compre-
hension of large and complex refactoring operations. Finally, we argue about a possible
thread in studies based on state-of-the-art mining tools [Tsantalis et al. 2018, Tsantalis

et al. 2020, Brito and Valente 2020, Silva and Valente 2017, Silva et al. 2020], which do
not detect refactoring performed in multiples commits.

Further studies can include other programming languages and ecosystems (e.g.,
the current version of Fowler’s book uses JavaScript [Fowler 2018]) and novel tech-
niques to detect refactorings in multiples commits. Also, future works can perform ex-
periments with practitioners using refactoring graphs. For example, in this study, we
consider the professors’ perspectives to understand refactoring operations performed by
students. Other studies can contemplate the student or developer viewpoint, using refac-
toring graphs as a tool to visualize refactoring tasks. The dataset is publicly available at:
alinebrito.github.io/refgraph-fowler-study

Acknowledgments
This research is supported by grants from FAPEMIG, CNPq, and CAPES.

References
Abid, C., Alizadeh, V., Kessentini, M., Ferreira, T., and Dig, D. (2020). 30 years of

software refactoring research: A systematic literature review. ArXiv, abs/2007.02194.

Abid, S., Abdul Basit, H., and Arshad, N. (2015). Reflections on teaching refactoring:
A tale of two projects. In 20th ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE), page 225–230.

Agrahari, V. and Chimalakonda, S. (2020). Refactor4green: A game for novice program-
mers to learn code smells. In 42nd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pages 324–325.

AlOmar, E., Mkaouer, M., and Ouni, A. (2021a). Knowledge Management in the Develop-
ment of Data-Intensive Systems, chapter Mining and Managing Big Data Refactoring
for Design Improvement: Are We There Yet? Auerbach Publications.

AlOmar, E. A., Mkaouer, M. W., and Ouni, A. (2021b). Toward the automatic classifica-
tion of self-affirmed refactoring. Journal of Systems and Software (JSS), 171:110821.

Bibiano, A. C., Fernandes, E., Oliveira, D., Garcia, A., Kalinowski, M., Fonseca, B.,
Oliveira, R., Oliveira, A., and Cedrim, D. (2019). A quantitative study on characteris-
tics and effect of batch refactoring on code smells. In 13th International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 1–11.

Bogart, A., AlOmar, E. A., Mkaouer, M. W., and Ouni, A. (2020). Increasing the trust
in refactoring through visualization. In 42nd International Conference on Software
Engineering Workshops (ICSEW), pages 334–341.

Brito, A., Hora, A., and Valente, M. T. (2020). Refactoring graphs: Assessing refactor-
ing over time. In 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 367–377.

Brito, A., Hora, A., and Valente, M. T. (2021). Characterizing refactoring graphs in Java
and JavaScript projects. Empirical Software Engineering, 26(6):1–43.

Brito, A., Xavier, L., Hora, A., and Valente, M. T. (2018). APIDiff: Detecting API
breaking changes. In 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Tool Track, pages 507–511.

alinebrito.github.io/refgraph-fowler-study

Brito, R. and Valente, M. T. (2020). RefDiff4Go: Detecting refactorings in Go. In 14th
Brazilian Symposium on Software Components, Architectures, and Reuse (SBCARS),
pages 101–110.

Brito, R. and Valente, M. T. (2021). RAID - Refactoring aware and intelligent diffs. In
29th International Conference on Program Comprehension (ICPC), pages 1–11.

Demeyer, S., Van Rysselberghe, F., Girba, T., Ratzinger, J., Marinescu, R., Mens, T., Du
Bois, B., Janssens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H., and El-Ramly,
M. (2005). The LAN-simulation: a refactoring teaching example. In 8th International
Workshop on Principles of Software Evolution (IWPSE), pages 123–131.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
USA.

Grund, F., Chowdhury, S., Bradley, N., Hall, B., and Holmes, R. (2021). CodeShovel:
Constructing method-level source code histories. In 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE), pages 1–13.

Hebig, R., Ho-Quang, T., Jolak, R., Schröder, J., Linero, H., Ågren, M., and Maro, S. H.
(2020). How do students experience and judge software comprehension techniques?
In 28th International Conference on Program Comprehension (ICPC), page 425–435.

Hora, A., Silva, D., Robbes, R., and Valente, M. T. (2018). Assessing the threat of
untracked changes in software evolution. In 40th International Conference on Software
Engineering (ICSE), pages 1102–1113.

Karac, E. I., Turhan, B., and Juristo, N. (2019). A controlled experiment with novice
developers on the impact of task description granularity on software quality in test-
driven development. IEEE Transactions on Software Engineering (TSE), pages 1–16.

Keuning, H., Heeren, B., and Jeuring, J. (2020). Student refactoring behaviour in a pro-
gramming tutor. In 20th Koli Calling International Conference on Computing Educa-
tion Research (Koli Calling), pages 1–10.

Kim, M., Zimmermann, T., and Nagappan, N. (2012). A field study of refactoring chal-
lenges and benefits. In 20th International Symposium on the Foundations of Software
Engineering (FSE), pages 50:1–50:11.

Kim, M., Zimmermann, T., and Nagappan, N. (2014). An empirical study of refactor-
ing challenge and benefits at Microsoft. IEEE Transactions on Software Engineering
(TSE), 40(7):633–649.

Leung, C. (2010). Technical notes on extending gSpan to directed graphs. Technical
report, Singapore Management University.

López, C., Alonso, J. M., Marticorena, R., and Maudes, J. M. (2014). Design of e-
activities for the learning of code refactoring tasks. In 2014 16th International Sympo-
sium on Computers in Education (SIIE), pages 35–40.

Mahmoudi, M., Nadi, S., and Tsantalis, N. (2019). Are refactorings to blame? an em-
pirical study of refactorings in merge conflicts. In 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 151–162.

Murphy-Hill, E., Parnin, C., and Black, A. P. (2009). How we refactor, and how we know
it. In 31st International Conference on Software Engineering (ICSE), pages 287–297.

Paixao, M., Uchôa, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J., and Arvonio,
E. (2020). Behind the intents: An in-depth empirical study on software refactoring in
modern code review. In 17th International Conference on Mining Software Reposito-
ries (MSR), pages 1–12.

Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota, G., and
Penta, M. D. (2020). Why developers refactor source code: A mining-based study.
ACM Transactions on Software Engineering and Methodology (TOSEM), 37(4):1–32.

Sanfeliu, A. and Fu, K.-S. (1983). A distance measure between attributed relational
graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernet-
ics (SMC), SMC-13(3):353–362.

Sellitto, G., Iannone, E., Codabux, Z., Lenarduzzi, V., Lucia, A. D., Palomba, F., and
Ferrucci1, F. (2022). Toward understanding the impact of refactoring on program
comprehension. In 29th International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 1–12.

Silva, D., da Silva, J. P., Santos, G., Terra, R., and Valente, M. T. (2020). RefDiff 2.0: A
multi-language refactoring detection tool. IEEE Transactions on Software Engineering
(TSE), 1(1):1–17.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why we refactor? Confessions of
GitHub contributors. In 24th International Symposium on the Foundations of Software
Engineering (FSE), pages 858–870.

Silva, D. and Valente, M. T. (2017). RefDiff: Detecting refactorings in version histories.
In 14th International Conference on Mining Software Repositories (MSR), pages 1–11.

Sousa, L., Cedrim, D., Garcia, A., Oizumi, W., Bibiano, A. C., Oliveira, D., Kim, M.,
and Oliveira, A. (2020). Characterizing and identifying composite refactorings: Con-
cepts, heuristics and patterns. In 17th International Conference on Mining Software
Repositories (MSR), pages 186–197.

Stoecklin, S., Smith, S., and Serino, C. (2007). Teaching students to build well formed
object-oriented methods through refactoring. In 38th Technical Symposium on Com-
puter Science Education (SIGCSE), pages 145–149.

Tsantalis, N., Ketkar, A., and Dig, D. (2020). RefactoringMiner 2.0. IEEE Transactions
on Software Engineering (TSE).

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., and Dig, D. (2018). Ac-
curate and efficient refactoring detection in commit history. In 40th International Con-
ference on Software Engineering (ICSE), pages 483–494.

Xifeng Yan and Jiawei Han (2002). gSpan: graph-based substructure pattern mining. In
2nd International Conference on Data Mining (ICDM), pages 721–724.

	Introduction
	Background
	Video Store System
	Refactoring Graphs

	Study Design
	Study Participants
	Refactoring Tasks & Research Questions
	Detecting Refactoring Operations
	Execution time

	Results
	(RQ1) How do Students Apply Refactorings When Following Explicit Guidelines?
	(RQ2) How do Students Apply Refactorings When Following Flexible Guidelines?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Discussion
	Conclusion

